Please wait a minute...
材料导报  2024, Vol. 38 Issue (9): 22100287-6    https://doi.org/10.11896/cldb.22100287
  金属与金属基复合材料 |
通孔球壳胞元结构压缩力学性能
牛克心, 余为*, 郝颖
燕山大学河北省重型装备与大型结构力学可靠性重点实验室,河北 秦皇岛 066004
Compressive Mechanical Properties of Through-hole Spherical Shell Cell Structures
NIU Kexin, YU Wei*, HAO Ying
Key Laboratory of Mechanics Reliability for Heavy Equipment and Large Structure in Hebei Province, Yanshan University, Qinhuangdao 066004, Hebei, China
下载:  全 文 ( PDF ) ( 6933KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 球壳胞元结构作为一种新型轻质功能材料,在航空航天、交通运输等领域有着广阔的应用前景。本工作通过实验和数值模拟的方法对简单堆积的通孔球壳胞元结构受压缩时的力学性能进行了研究,得出其名义应力-应变曲线,分析了结构的有效弹性模量、屈服极限、平台应力、比吸能等性能随球壳壁厚和球心距变化的规律。结果表明,部分球壳胞元结构在压缩过程中出现屈曲现象,并翻转形成塑性铰,从而增强结构的承载能力。球壳胞元结构的有效弹性模量、屈服极限随着球心距增大呈先增加后减小的规律,其平台应力和比吸能随着球心距增大而增加。综合各项数据可得,球壳胞元结构的球心距大于等于18.0 mm是更理想的结构形式。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
牛克心
余为
郝颖
关键词:  球壳胞元结构  压缩实验  数值模拟  有效弹性模量  比吸能    
Abstract: As a new kind of multi-functional lightweight material, spherical shell cell structure has a great application prospect in aerospace, transportation and other fields. In this work, the mechanical properties of simple cubic through-hole spherical shell cell structure under compression were studied by means of experiment and numerical simulation. The nominal stress-strain curves were obtained, and the rules of effective elastic modulus, yield limit, platform stress, specific energy absorption and other properties with the change of shell wall thickness and spherical center distance was studied. The results showed that some spherical shell cell structures appeared buckling and turn over to form plastic hinges during the compression process, thus enhancing the bearing capacity of the structure. The effective elastic modulus and yield limit of the spherical shell cell structure increased first and then decreased with the increase of the spherical center distance, and the platform stress and specific energy absorption increased with the increase of the spherical center distance. It can be concluded that the spherical center distance greater than or equal to 18.0 mm is a more ideal structure.
Key words:  spherical shell cell structure    compressive experiment    numerical simulation    effective elastic modulus    specific energy absorption
出版日期:  2024-05-10      发布日期:  2024-05-13
ZTFLH:  O341  
基金资助: 国家自然科学基金(11902287)
通讯作者:  * 余为,2011年1月毕业于燕山大学工程力学系,获得博士学位。现为燕山大学工程力学系教授,主要研究方向为轻质多孔功能复合材料、超轻多孔金属结构及复合材料的设计和性能分析。近年来,发表SCI检索论文十余篇。yuweichn@163.com   
作者简介:  牛克心,2022年6月毕业于燕山大学工程力学系,获得工学硕士学位。现为长城汽车股份有限公司员工,硕士期间主要研究领域为轻质多孔材料力学性能分析与结构优化设计。
引用本文:    
牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
NIU Kexin, YU Wei, HAO Ying. Compressive Mechanical Properties of Through-hole Spherical Shell Cell Structures. Materials Reports, 2024, 38(9): 22100287-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100287  或          http://www.mater-rep.com/CN/Y2024/V38/I9/22100287
1 Lu T J, He D P, Chen C Q, et al. Advances in Mechanics, 2006, 36(4), 517 (in Chinese).
卢天健, 何德坪, 陈常青,等. 力学进展, 2006, 36(4), 517.
2 Zhang J X, Ye Y, Zhu Y Q, et al.International Journal of Solids and Structures, 2020, 202, 111.
3 Kitching R, Houlston R, Johnson W.International Journal of Mechanical Sciences, 1975, 17(11), 693.
4 Updike D P, Kalnins A.Journal of Applied Mechanics, 1970, 37(3), 635.
5 Lu G Y, Guan W B, Yang H W, et al.Chinese Journal of High Pressure Physics, 2014, 28(2), 137 (in Chinese).
路国运, 管文博, 杨会伟, 等. 高压物理学报, 2014, 28(2), 137.
6 Yu W, Li H J, Liang X, et al.Engineering Mechanics, 2013, 30(11), 260 (in Chinese).
余为, 李慧剑, 梁希, 等. 工程力学, 2013, 30(11), 260.
7 Yu W, Xin M J, Li H J, et al.Journal of Experimental Mechanics, 2012, 27(3), 377 (in Chinese).
余为, 辛美娟, 李慧剑, 等. 实验力学, 2012, 27(3), 377.
8 Song J L, Zhang Y K, Sun Q S.Journal of Mechanical Strength, 2019, 41(4), 833 (in Chines).
宋金良, 张益康, 孙全胜. 机械强度, 2019, 41(4), 833.
9 Song J L, Hu D W, Luo S M, et al.Engineering Structures, 2021, 226, 1.
10 Zhang W, Yang H W, Guan W B, et al.Engineering Mechanics, 2016, 33(2), 242 (in Chinese).
张威, 杨会伟, 管文博, 等. 工程力学, 2016, 33(2), 242.
11 Wu C W, Zhang P C, Zhou P.Journal of Dalian University of Technology, 2008, 48(5), 625 (in Chinese).
吴承伟, 张鹏程, 周平. 大连理工大学学报, 2008, 48(5), 625.
12 Dai M L, Yang F J, He X Y, et al.Journal of Mechanical Strength, 2020, 42(1), 36 (in Chinese).
戴美玲, 杨福俊, 何小元, 等. 机械强度, 2020, 42(1), 36.
13 Fiedler T, Hosseini S M H, Belova I V, et al.Computational Materials Science, 2009, 47(2), 314.
14 Gao Z Y, Yu T X, Karagiozova D.Acta Mechanica Sinica, 2007, 23, 65.
15 Luo X, Xu J Y, Nie L X, et al.Composite Structures, 2015, 133, 124.
16 Chen M C. Preparation and damping properties of 316L stainless stell hollow spheres/aluminum matrix composite. Master’s Thesis, Harbin Engineeing University, China, 2021 (in Chinese).
陈牧川. 316L不锈钢空心球/铝基复合材料制备及其阻尼性能研究. 硕士学位论文, 哈尔滨工程大学, 2021.
17 Wu H X, Liu Y, Zhang X C, et al.Engineering Mechanics, 2011, 28(12), 213 (in Chinese).
吴鹤翔, 刘颖, 张新春, 等. 工程力学, 2011, 28(12), 213.
18 Liu G P. The impact characteristics and multi-objective optimization of metal hollow sphere foam. Master’s Thesis, Dalian University of Techno-logy, China, 2015 (in Chinese).
刘国平. 金属空心球泡沬冲击特性与多目标优化. 硕士学位论文, 大连理工大学, 2015.
19 Yang S, Liu G P, Qi C, et al. Journal of Zhejiang University(Enginee-ring Science), 2016, 50(8), 1593 (in Chinese).
杨姝, 刘国平, 亓昌, 等. 浙江大学学报(工学版),2016, 50(8), 1593.
20 Gupta N. Materials Letters, 2007, 61, 979.
21 Fan J H, Zhang J J, Wang Z H, et al.Materials Science & Engineering A, 2013, 561, 352.
[1] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[2] 金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
[3] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[4] 姜琴, 刁珂龙, 杨谋存, 朱跃钊. 纳米流体中温热稳定性研究进展[J]. 材料导报, 2023, 37(S1): 23040330-10.
[5] 朱雪伟, 王海斗, 刘明, 朴钟宇. 等离子熔覆数值模拟研究现状[J]. 材料导报, 2023, 37(7): 21040228-9.
[6] 王群, 李晨宇, 周忠华, 曹文, 周子吉, 孙慧慧, 黄悦, 沈志奇. 化学钢化前后玻璃表面裂纹扩展的实验比较与数值模拟[J]. 材料导报, 2023, 37(5): 21050255-5.
[7] 李舒玥, 傅广, 李泓历, 彭庆国, 肖华强, 张钧星, 张泽华. 激光选区熔化增材制造吸收率的研究进展[J]. 材料导报, 2023, 37(24): 22040104-10.
[8] 方静, 祁文军, 胡国玉. 8 mm中厚板TC4钛合金TIG焊数值模拟及实验研究[J]. 材料导报, 2023, 37(22): 22030018-6.
[9] 易家俊, 左晓宝, 黎亮, 邹欲晓. 水泥水化过程的概率模型及其微结构演变的数值模拟[J]. 材料导报, 2023, 37(18): 22040014-7.
[10] 聂文, 许长炜, 彭慧天, 张少波. 矿井新型增润促凝喷雾降尘剂的研制与抑尘性能研究[J]. 材料导报, 2023, 37(15): 22030228-9.
[11] 王恒星, 秦芳诚, 齐会萍, 汪扬波, 王于金. 双金属层状构件界面结合的模拟与实验研究进展[J]. 材料导报, 2023, 37(14): 21120136-12.
[12] 梁宁慧, 周侃, 兰菲, 刘新荣, 邓志云. 玄武岩-聚丙烯粗纤维混凝土管承载力试验研究[J]. 材料导报, 2023, 37(11): 21100164-8.
[13] 余国卿, 许永康, 王东亮, 牛勇, 司明达, 张茂, 龚攀, 王新云. 陶瓷颗粒增强Zr基非晶合金复合材料高温变形行为研究[J]. 材料导报, 2023, 37(1): 21110013-7.
[14] 陈东方, 武海鹏, 梁钒, 周骐, 宋显刚, 田爱琴. 六边形Al-复合材料薄壁混杂管准静态压缩实验和吸能机理分析[J]. 材料导报, 2022, 36(Z1): 22020120-6.
[15] 王兆, 张新虎, 王召浩, 王冠, 惠永博, 郑伟, 丁阳, 朱丽兵, 邓勇军, 傅先刚, 恽迪, 柳文波. 基于MOOSE平台的UO2燃料性能分析[J]. 材料导报, 2022, 36(7): 21040019-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed