Research Status of Numerical Simulation of Plasma Cladding Processes
ZHU Xuewei1, WANG Haidou2,3,*, LIU Ming3,*, PIAO Zhongyu1
1 School of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China 2 National Engineering Research Center for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China 3 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
Abstract: In the field of surface engineering thermal spraying, plasma cladding is a promising technology that has the advantages of high heat input and low cost. In the research of plasma cladding, scholars usually use empirical induction to determine the best parameters. However, this process requires a large amount of experimental data to support and waste materials. If numerical simulation is used, phenomena that cannot be monitored by traditional observation methods in plasma cladding can be analyzed, and material loss during the experiment can be effectively saved. In recent years, researchers have studied numerical simulations of transfer arc stability, arc root adhesion, molten pool growth, and heat distribution during cladding layer accumulation based on a variety of different assumptions, and the results have been remarkable. These results provide theoretical support for the further optimization of the plasma cladding gun body design and the determination of process parameters. At present, in domestic and foreign research, the numerical simulation of plasma cladding is limited to the coupling distortion of complex physical fields and the simplification of electromagnetic field models. It cannot reflect the mechanism between the generation and release process of the transfer arc and the substrate coating. Therefore, it is necessary to further explore the coupling of multiphysics, optimize the numerical simulation method, and build an overall cladding simulation system. This article starts with a general introduction of the numerical simulation process of plasma cladding, followed by a summary that covers the simulation of energy distribution, flow field continuity, and electromagnetic characteristics in the plasma cladding jet, and the simulation of the molten pool and particle deposition during the formation of the cladding layer. Based on the summary, the paper also gives a discussion on the challenging problems and the research outlook of this topic, which is expected to provide a re-ference for the development of plasma cladding techniques with better performance.
1 Men X D, Tao F H, Gan L, et al. Surface and Coatings Technology, 2019, 372, 369. 2 Xu B Z, Zhu S H. Theories and technologies on surface engineering, National Defense Industry Press, China, 2010 (in Chinese). 徐滨士, 朱绍华. 表面工程的理论与技术, 国防工业出版社, 2010. 3 Wang H J. Practical technology of thermal spraying, National Defense Industry Press, China, 2006 (in Chinese). 王海军. 热喷涂实用技术, 国防工业出版社, 2006. 4 Martínez-Villegas I, Mora-García A G, Ruiz-Luna H, et al. Coatings, 2020, 10, 388. 5 Lai Y B, Yang B, Wang D Y, et al. Surface Technology, 2020, 49(6), 185 (in Chinese). 来佑彬, 杨波, 王冬阳, 等. 表面技术, 2020, 49(6), 185. 6 Zhou Y X, Zhang J, Xing Z G, et al. Surface and Coatings Technology, 2019, 361, 270. 7 Deshmukh D D, Kalyankar V D. High Temperature Materials and Processes, 2019, 38, 248. 8 Wang X B, Zhang P P, Xiao C, et al. Surface Engineering, 2012, 28(1), 11. 9 Soufiane Oukacha, Bernard Pateyronb, Lech Pawłowski. Surface Science Reports, 2019, 74(3), 213. 10 Jiang Y, Liu M, Wang H Y, et al. Materials Research Innovations, 2015, 19(5), 168. 11 Karthikeyan S, Balasubramanian V, Rajendran R. Applied Surface Science, 2014, 296, 31. 12 Liu M M, Yu Z X, Zhang Y C, et al. Surface and Coatings Technology, 2019, 378, 124988. 13 Jayachandran J A R, Murugan N. Materials and Manufacturing Processes, 2012, 27(1), 69. 14 Fauchais P, Vardelle M, Goutier S. Plasma Chemistry and Plasma Processing, 2017, 37(3), 601. 15 Coors T, Pape F, Kruse J, et al. The International Journal of Advanced Manufacturing Technology, 2020, 108(7-8), 2409. 16 Li W Y, Zhang D D, Huang C J, et al. Surface Engineering, 2014, 30(5), 299. 17 Li Y, Cui X F, Tan N, et al. Surface Engineering, 2020, 36(7), 695. 18 Wang K, Shi Y J, Zhou X Y, et al. Materials Science and Technology, 2021, 29(1), 81 (in Chinese). 王凯, 石勇军, 周小雨, 等. 材料科学与工艺, 2021, 29(1), 81. 19 Ushakov A V, Karpov I V, Shaihadnov A A, et al. Vacuum, 2020, 179, 109509. 20 Angel Ochoa Brezmes, Cornelia Breitkopf. Vacuum, 2014, 109, 52. 21 Trelles J P. Plasma Processes and Polymers, 2016, 14(1-2), 1600092. 22 Ballah Z, Khelfaoui F. Journal of King Saud University-Science, 2020, 32(1), 620. 23 Li J Q, Hao L, Li J, Science China Technological Sciences, 2019, 62(12), 2204. 24 Wei P, Wei Z Y, Zhao G X, et al. Computational Materials Science, 2015, 103, 8. 25 Jiang Y C, Cheng Y H, Zhang X C, Optik, 2020, 203(12), 16044. 26 Wu S X, Situ D Z, Zhang Z W, et al. Journal of Chemical Engineering of Chinese Universities, 2020(2), 318 (in Chinese). 武劭恂, 司徒达志, 张子炜, 等. 高校化学工程学报, 2020(2), 318. 27 Pawar S, Sharma A. Journal of the Institution of Engineers (India):Series C, 2019, 100(1), 145. 28 Zhang X, Wang H, Li R S, et al. Electric Welding Machine, 2013, 43(12), 89 (in Chinese). 张翔, 王宏, 李日升, 等. 电焊机, 2013, 43(12), 89. 29 Laly L G, Ramachandran K. Journal of Physics D:Applied Physics, 2018, 51(30), 305202. 30 Dalir E, Dolatabadi A, Mostaghimi J. Journal of Thermal Spray Technology, 2019, 28, 1105. 31 Ding S Y, Ma G Z, Ding F J, et al. China Surface Engineering, 2019, 32(2), 98 (in Chinese). 丁述宇, 马国政, 丁发军, 等. 中国表面工程, 2019, 32(2), 98. 32 Meillot E, Vincent S, Caruyer C, et al. Journal of Physics D:Applied Physics, 2013, 46, 224017. 33 Wang W Z, Rong M Z, Yan J D, et al. IEEE Transactions on Plasma Science, 2012, 40(4), 980. 34 Zhu T, Wang H X, Sun S R, et al. Plasma Science and Technology, 2019, 21(12), 125406. 35 Boselli M, Gherardi M, Colombo V, Journal of Physics D:Applied Physics, 2019, 52(44), 444001. 36 Laly L G, Ramachandran K. Plasma Research Express, 2020, 2(2), 025005, 37 Bobzin K, Bagcivan N, Petkovic I, Journal of Materials Processing Technology, 2011, 211, 620. 38 Trelles J P. Plasma Processes and Polymers, 2016, 14(1-2), 1600092. 39 Baeva M, Kozakov R, Gorchakov S, et al. Plasma Sources Science and Technology, 2012, 21(5), 055027. 40 Rondanini M, Cavallotti C, Ricci D, et al. Journal of Applied Physics, 2008, 104(1), 013304. 41 Zhang X B, Deguchi Y, Liu J P. Journal of Applied Physics, 2012, 51(1), 01AA04. 42 Djebali R, Pateyron B, ElGanaoui M. CMC-Computers Materials & Continua, 2011, 25(2), 159. 43 Djebali R, Pateyron B, ElGanaoui M. Progress in Computational Fluid Dynamics, 2012, 12(4), 270. 44 Hattori H, Tamada S, Tanaka M. International Journal of Heat and Fluid Flow, 2013, 41, 34. 45 Li X L. Acta Aeronautica ET Astronautica Sinica, 2015, 36(1), 147 (in Chinese). 李新亮. 航空学报, 2015, 36(1), 147. 46 Modirkhazeni S M, Trelles J P. Journal of Thermal Spray Technology, 2018, 27(8), 1447. 47 Masaya Shigeta. Journal of Physics D:Applied Physics, 2016, 49, 493001. 48 Colombo V, Concetti A, Ghedini E, et al. IEEE Transactions on Plasma Science, 2011, 39(11), 2894. 49 Trelles J P. Journal of Physics D:Applied Physics, 2013, 46, 255201. 50 Yuka Arai, Yusuke Mizuno, Yu Sumoto, et al. Journal of Mechanics Engineering and Automation, 2019, 9, 75. 51 Tang K M, Yan J D, Chapman C, et al. Journal of Physics D:Applied Physics, 2010, 43(34), 345201. 52 Douce A, Delalondre C, Biausser H, et al. ISIJ International, 2003, 43(8), 1128. 53 Wei P, Wei Z Y, Zhao G X, et al. Heat and Mass Transfer, 2016, 52, 1739. 54 Trelles J P, Modirkhazeni S M. Computer Methods in Applied Mechanics and Engineering, 2014, 282, 87. 55 Sun S R, Wang H X, Zhu T, et al. Plasma Chemistry and Plasma Processing, 2019, 40, 261. 56 Sun S R, Wang H X, Zhu T, et al. Journal of Physics D:Applied Physics, 2020, 53(30), 305202. 57 DebRoy T, Wei H L, Zuback J S, et al. Progress in Materials Science, 2018, 92, 112. 58 Liu H M, Li M B, Qin X P, et al. The International Journal of Advanced Manufacturing Technology, 2019, 100, 237. 59 Song B X, Yu T B, Jiang X Y, et al. Numerical Heat Transfer, Part A:Applications, 2019, 75(12), 855. 60 Wang M D, Shi S H, Liu X B, et al. Key Engineering Materials, 2012, 499, 114. 61 Bi X Q, Yang Z L. China Surface Engineering, 2009, 22(3), 43. 毕晓勤, 杨仲磊. 中国表面工程, 2009, 22(3), 43. 62 Efremenko V G, Chabak Y G, Shimizu K, et al. Materials & Design, 2017, 126, 278. 63 Kumar P, Jain N K, Sawant M S. The International Journal of Advanced Manufacturing Technology, 2020, 107, 3155. 64 Nikam S H, Jain N K. Journal of Materials Processing Technology, 2017, 249, 264. 65 Sawant M S, Jain N K, Nikam S H. International Journal of Mechanical Sciences, 2019, 164(5), 105166. 66 Liu J Y, Zeng D X, Xing J D, et al. Journal of Thermal Spray Technology, 2014, 23(8), 1390. 67 Nikam S H, Jain N K, Sawant M S. The International Journal of Advanced Manufacturing Technology, 2020, 106(3-4), 1239. 68 Zhou L H. Jorunal of Functional Materials, 2021, 52(3), 3200. 周立华. 功能材料, 2021, 52(3), 3200.