Please wait a minute...
材料导报  2023, Vol. 37 Issue (7): 21040228-9    https://doi.org/10.11896/cldb.21040228
  金属与金属基复合材料 |
等离子熔覆数值模拟研究现状
朱雪伟1, 王海斗2,3,*, 刘明3,*, 朴钟宇1
1 浙江工业大学机械工程学院,杭州 310023
2 陆军装甲兵学院机械产品再制造国家工程研究中心,北京 100072
3 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
Research Status of Numerical Simulation of Plasma Cladding Processes
ZHU Xuewei1, WANG Haidou2,3,*, LIU Ming3,*, PIAO Zhongyu1
1 School of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
2 National Engineering Research Center for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
3 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
下载:  全 文 ( PDF ) ( 32069KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 等离子熔覆是表面工程热喷涂领域一项有发展前景的技术,具有热输入高、成本低的优势。等离子熔覆工艺研究一般采用经验归纳法确定最佳参数,该过程需要大量实验数据支撑,浪费材料。采用数值模拟优化工艺可以对等离子熔覆中传统观测手段无法监控的现象进行描述,并有效节省实验过程中的材料损耗。近年来,研究者们基于多种不同假定研究了转移电弧稳定、弧根附着、熔池生长及熔覆层堆积过程热分布等的数值模拟,成果斐然,这为进一步优化等离子熔覆枪的枪体设计、工艺参数的确定提供了理论支撑。在目前的国内外研究中,等离子熔覆数值模拟局限于复杂物理场的耦合失真与电磁场模型的编写简化,难以描述转移弧的产生释放过程与基体涂层间的作用机理,这需要进一步探究多物理场耦合、优化数值模拟方法、构建整体熔覆模拟系统。本文总结了等离子熔覆数值模拟的一般过程,分别对等离子熔覆射流特性模拟中能量分布、流场连续、电磁学特性三方面特性的模拟及熔覆层形成过程中熔池及粒子沉积模拟进行归纳,分析了数值模拟研究等离子熔覆工艺所面临的问题并展望其前景,为探索性能更加优良的等离子熔覆工艺提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱雪伟
王海斗
刘明
朴钟宇
关键词:  等离子熔覆  数值模拟  转移电弧  熔池    
Abstract: In the field of surface engineering thermal spraying, plasma cladding is a promising technology that has the advantages of high heat input and low cost. In the research of plasma cladding, scholars usually use empirical induction to determine the best parameters. However, this process requires a large amount of experimental data to support and waste materials. If numerical simulation is used, phenomena that cannot be monitored by traditional observation methods in plasma cladding can be analyzed, and material loss during the experiment can be effectively saved. In recent years, researchers have studied numerical simulations of transfer arc stability, arc root adhesion, molten pool growth, and heat distribution during cladding layer accumulation based on a variety of different assumptions, and the results have been remarkable. These results provide theoretical support for the further optimization of the plasma cladding gun body design and the determination of process parameters. At present, in domestic and foreign research, the numerical simulation of plasma cladding is limited to the coupling distortion of complex physical fields and the simplification of electromagnetic field models. It cannot reflect the mechanism between the generation and release process of the transfer arc and the substrate coating. Therefore, it is necessary to further explore the coupling of multiphysics, optimize the numerical simulation method, and build an overall cladding simulation system. This article starts with a general introduction of the numerical simulation process of plasma cladding, followed by a summary that covers the simulation of energy distribution, flow field continuity, and electromagnetic characteristics in the plasma cladding jet, and the simulation of the molten pool and particle deposition during the formation of the cladding layer. Based on the summary, the paper also gives a discussion on the challenging problems and the research outlook of this topic, which is expected to provide a re-ference for the development of plasma cladding techniques with better performance.
Key words:  plasma cladding    numerical simulation    transfer arc    molten pool
出版日期:  2023-04-10      发布日期:  2023-04-07
ZTFLH:  TG174.4  
基金资助: 国家自然科学基金(52075542;52130509;52105235);装备预研重点基金项目(61409230607)
通讯作者:  * 王海斗,博士生导师,陆军装甲兵学院机械产品再制造国家工程研究中心主任。1991年7月本科毕业于解放军理工大学机械工程专业。2003年6月在清华大学获得材料加工专业博士学位。目前的研究领域包括表面工程、再制造和摩擦学研究。出版中英文著作4部,发表SCI论文110余篇,授权国家发明专利及软件著作权近20项。先后获得军队及部级科技进步一等奖2项、二等奖3项,国家杰出青年科学基金,中国人民解放军科技领军人才,百千万人才工程国家级人选等奖项,现任国防973计划首席科学家。whaidou2021@163.com
刘明,陆军装甲兵学院装备再制造技术国防科技重点实验室助理研究员。2001年7月本科毕业于装甲兵工程学院,2018年12月在陆军装甲兵学院装备保障与再制造系材料科学与工程专业取得博士学位。长期从事表面涂层、等离子喷涂方面的研究工作,先后主持或参与国家级及军队级科研项目10余项,其中主持国家自然科学基金面上项目1项、装发预研重点基金项目1项、武器装备预研基金项目2项,获中国机械工业科技发明二等奖1项、军队科技进步二等奖2项。授权国家(国防)发明专利20余项,发表论文40余篇。hzaam@163.com   
作者简介:  朱雪伟,2019年6月毕业于浙江工业大学,获得工学学士学位。现为浙江工业大学机械工程学院硕士研究生,在王海斗教授、朴钟宇教授和刘明助理研究员的指导下进行研究。目前主要研究领域为等离子喷熔、数值模拟等。
引用本文:    
朱雪伟, 王海斗, 刘明, 朴钟宇. 等离子熔覆数值模拟研究现状[J]. 材料导报, 2023, 37(7): 21040228-9.
ZHU Xuewei, WANG Haidou, LIU Ming, PIAO Zhongyu. Research Status of Numerical Simulation of Plasma Cladding Processes. Materials Reports, 2023, 37(7): 21040228-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040228  或          http://www.mater-rep.com/CN/Y2023/V37/I7/21040228
1 Men X D, Tao F H, Gan L, et al. Surface and Coatings Technology, 2019, 372, 369.
2 Xu B Z, Zhu S H. Theories and technologies on surface engineering, National Defense Industry Press, China, 2010 (in Chinese).
徐滨士, 朱绍华. 表面工程的理论与技术, 国防工业出版社, 2010.
3 Wang H J. Practical technology of thermal spraying, National Defense Industry Press, China, 2006 (in Chinese).
王海军. 热喷涂实用技术, 国防工业出版社, 2006.
4 Martínez-Villegas I, Mora-García A G, Ruiz-Luna H, et al. Coatings, 2020, 10, 388.
5 Lai Y B, Yang B, Wang D Y, et al. Surface Technology, 2020, 49(6), 185 (in Chinese).
来佑彬, 杨波, 王冬阳, 等. 表面技术, 2020, 49(6), 185.
6 Zhou Y X, Zhang J, Xing Z G, et al. Surface and Coatings Technology, 2019, 361, 270.
7 Deshmukh D D, Kalyankar V D. High Temperature Materials and Processes, 2019, 38, 248.
8 Wang X B, Zhang P P, Xiao C, et al. Surface Engineering, 2012, 28(1), 11.
9 Soufiane Oukacha, Bernard Pateyronb, Lech Pawłowski. Surface Science Reports, 2019, 74(3), 213.
10 Jiang Y, Liu M, Wang H Y, et al. Materials Research Innovations, 2015, 19(5), 168.
11 Karthikeyan S, Balasubramanian V, Rajendran R. Applied Surface Science, 2014, 296, 31.
12 Liu M M, Yu Z X, Zhang Y C, et al. Surface and Coatings Technology, 2019, 378, 124988.
13 Jayachandran J A R, Murugan N. Materials and Manufacturing Processes, 2012, 27(1), 69.
14 Fauchais P, Vardelle M, Goutier S. Plasma Chemistry and Plasma Processing, 2017, 37(3), 601.
15 Coors T, Pape F, Kruse J, et al. The International Journal of Advanced Manufacturing Technology, 2020, 108(7-8), 2409.
16 Li W Y, Zhang D D, Huang C J, et al. Surface Engineering, 2014, 30(5), 299.
17 Li Y, Cui X F, Tan N, et al. Surface Engineering, 2020, 36(7), 695.
18 Wang K, Shi Y J, Zhou X Y, et al. Materials Science and Technology, 2021, 29(1), 81 (in Chinese).
王凯, 石勇军, 周小雨, 等. 材料科学与工艺, 2021, 29(1), 81.
19 Ushakov A V, Karpov I V, Shaihadnov A A, et al. Vacuum, 2020, 179, 109509.
20 Angel Ochoa Brezmes, Cornelia Breitkopf. Vacuum, 2014, 109, 52.
21 Trelles J P. Plasma Processes and Polymers, 2016, 14(1-2), 1600092.
22 Ballah Z, Khelfaoui F. Journal of King Saud University-Science, 2020, 32(1), 620.
23 Li J Q, Hao L, Li J, Science China Technological Sciences, 2019, 62(12), 2204.
24 Wei P, Wei Z Y, Zhao G X, et al. Computational Materials Science, 2015, 103, 8.
25 Jiang Y C, Cheng Y H, Zhang X C, Optik, 2020, 203(12), 16044.
26 Wu S X, Situ D Z, Zhang Z W, et al. Journal of Chemical Engineering of Chinese Universities, 2020(2), 318 (in Chinese).
武劭恂, 司徒达志, 张子炜, 等. 高校化学工程学报, 2020(2), 318.
27 Pawar S, Sharma A. Journal of the Institution of Engineers (India):Series C, 2019, 100(1), 145.
28 Zhang X, Wang H, Li R S, et al. Electric Welding Machine, 2013, 43(12), 89 (in Chinese).
张翔, 王宏, 李日升, 等. 电焊机, 2013, 43(12), 89.
29 Laly L G, Ramachandran K. Journal of Physics D:Applied Physics, 2018, 51(30), 305202.
30 Dalir E, Dolatabadi A, Mostaghimi J. Journal of Thermal Spray Technology, 2019, 28, 1105.
31 Ding S Y, Ma G Z, Ding F J, et al. China Surface Engineering, 2019, 32(2), 98 (in Chinese).
丁述宇, 马国政, 丁发军, 等. 中国表面工程, 2019, 32(2), 98.
32 Meillot E, Vincent S, Caruyer C, et al. Journal of Physics D:Applied Physics, 2013, 46, 224017.
33 Wang W Z, Rong M Z, Yan J D, et al. IEEE Transactions on Plasma Science, 2012, 40(4), 980.
34 Zhu T, Wang H X, Sun S R, et al. Plasma Science and Technology, 2019, 21(12), 125406.
35 Boselli M, Gherardi M, Colombo V, Journal of Physics D:Applied Physics, 2019, 52(44), 444001.
36 Laly L G, Ramachandran K. Plasma Research Express, 2020, 2(2), 025005,
37 Bobzin K, Bagcivan N, Petkovic I, Journal of Materials Processing Technology, 2011, 211, 620.
38 Trelles J P. Plasma Processes and Polymers, 2016, 14(1-2), 1600092.
39 Baeva M, Kozakov R, Gorchakov S, et al. Plasma Sources Science and Technology, 2012, 21(5), 055027.
40 Rondanini M, Cavallotti C, Ricci D, et al. Journal of Applied Physics, 2008, 104(1), 013304.
41 Zhang X B, Deguchi Y, Liu J P. Journal of Applied Physics, 2012, 51(1), 01AA04.
42 Djebali R, Pateyron B, ElGanaoui M. CMC-Computers Materials & Continua, 2011, 25(2), 159.
43 Djebali R, Pateyron B, ElGanaoui M. Progress in Computational Fluid Dynamics, 2012, 12(4), 270.
44 Hattori H, Tamada S, Tanaka M. International Journal of Heat and Fluid Flow, 2013, 41, 34.
45 Li X L. Acta Aeronautica ET Astronautica Sinica, 2015, 36(1), 147 (in Chinese).
李新亮. 航空学报, 2015, 36(1), 147.
46 Modirkhazeni S M, Trelles J P. Journal of Thermal Spray Technology, 2018, 27(8), 1447.
47 Masaya Shigeta. Journal of Physics D:Applied Physics, 2016, 49, 493001.
48 Colombo V, Concetti A, Ghedini E, et al. IEEE Transactions on Plasma Science, 2011, 39(11), 2894.
49 Trelles J P. Journal of Physics D:Applied Physics, 2013, 46, 255201.
50 Yuka Arai, Yusuke Mizuno, Yu Sumoto, et al. Journal of Mechanics Engineering and Automation, 2019, 9, 75.
51 Tang K M, Yan J D, Chapman C, et al. Journal of Physics D:Applied Physics, 2010, 43(34), 345201.
52 Douce A, Delalondre C, Biausser H, et al. ISIJ International, 2003, 43(8), 1128.
53 Wei P, Wei Z Y, Zhao G X, et al. Heat and Mass Transfer, 2016, 52, 1739.
54 Trelles J P, Modirkhazeni S M. Computer Methods in Applied Mechanics and Engineering, 2014, 282, 87.
55 Sun S R, Wang H X, Zhu T, et al. Plasma Chemistry and Plasma Processing, 2019, 40, 261.
56 Sun S R, Wang H X, Zhu T, et al. Journal of Physics D:Applied Physics, 2020, 53(30), 305202.
57 DebRoy T, Wei H L, Zuback J S, et al. Progress in Materials Science, 2018, 92, 112.
58 Liu H M, Li M B, Qin X P, et al. The International Journal of Advanced Manufacturing Technology, 2019, 100, 237.
59 Song B X, Yu T B, Jiang X Y, et al. Numerical Heat Transfer, Part A:Applications, 2019, 75(12), 855.
60 Wang M D, Shi S H, Liu X B, et al. Key Engineering Materials, 2012, 499, 114.
61 Bi X Q, Yang Z L. China Surface Engineering, 2009, 22(3), 43.
毕晓勤, 杨仲磊. 中国表面工程, 2009, 22(3), 43.
62 Efremenko V G, Chabak Y G, Shimizu K, et al. Materials & Design, 2017, 126, 278.
63 Kumar P, Jain N K, Sawant M S. The International Journal of Advanced Manufacturing Technology, 2020, 107, 3155.
64 Nikam S H, Jain N K. Journal of Materials Processing Technology, 2017, 249, 264.
65 Sawant M S, Jain N K, Nikam S H. International Journal of Mechanical Sciences, 2019, 164(5), 105166.
66 Liu J Y, Zeng D X, Xing J D, et al. Journal of Thermal Spray Technology, 2014, 23(8), 1390.
67 Nikam S H, Jain N K, Sawant M S. The International Journal of Advanced Manufacturing Technology, 2020, 106(3-4), 1239.
68 Zhou L H. Jorunal of Functional Materials, 2021, 52(3), 3200.
周立华. 功能材料, 2021, 52(3), 3200.
[1] 王群, 李晨宇, 周忠华, 曹文, 周子吉, 孙慧慧, 黄悦, 沈志奇. 化学钢化前后玻璃表面裂纹扩展的实验比较与数值模拟[J]. 材料导报, 2023, 37(5): 21050255-5.
[2] 乔及森, 杨元庄, 王磊, 高振云, 冯睿. 焊剂片约束电弧焊接三明治板熔滴过渡与熔池波动研究[J]. 材料导报, 2023, 37(2): 21050032-8.
[3] 余国卿, 许永康, 王东亮, 牛勇, 司明达, 张茂, 龚攀, 王新云. 陶瓷颗粒增强Zr基非晶合金复合材料高温变形行为研究[J]. 材料导报, 2023, 37(1): 21110013-7.
[4] 王兆, 张新虎, 王召浩, 王冠, 惠永博, 郑伟, 丁阳, 朱丽兵, 邓勇军, 傅先刚, 恽迪, 柳文波. 基于MOOSE平台的UO2燃料性能分析[J]. 材料导报, 2022, 36(7): 21040019-7.
[5] 徐洲, 李晓延, 王小鹏, 王海东. 组合热源模型在焊接模拟中的应用现状与展望[J]. 材料导报, 2022, 36(6): 20070081-6.
[6] 肖颍杰, 石少卿, 刘盈丰, 陈首, 廖瑜. 聚脲钢板复合层抗枪弹侵彻性能研究[J]. 材料导报, 2022, 36(23): 22010187-7.
[7] 肖昌伟, 李文晓. 树脂传递模塑成型工艺复合材料孔隙表征和孔隙形成预测研究进展[J]. 材料导报, 2022, 36(23): 21100167-7.
[8] 袁信翊, 刘杨, 李明轩, 陆晓峰, 朱晓磊. 基于打印参数的选区激光熔化构件内部形貌调控研究现状[J]. 材料导报, 2022, 36(21): 20080263-9.
[9] 刘宇, 张桂芳, 漆鑫, 施哲, 严鹏, 姜琦. 电磁悬浮熔炼金属合金的研究进展:应用和数值模拟[J]. 材料导报, 2022, 36(21): 20080265-8.
[10] 刘玉宝, 王举金, 杨文, 刘风琴, 李亚琼, 崔凌霄, 张洋. LaFe合金在底吹氩钢包内熔化混匀的数值模拟研究[J]. 材料导报, 2022, 36(21): 21050172-7.
[11] 崔朝兴, 董世运, 胡效东, 闫世兴, 姜浩涌. 激光熔化沉积成形过程数值模拟研究现状[J]. 材料导报, 2022, 36(2): 20040221-6.
[12] 赵鸿飞, 郭丽丽, 赵颖, 苑菁茹, 运新兵. AZ31镁合金板材单双杆连续挤压变形过程及组织性能的对比[J]. 材料导报, 2022, 36(18): 21040305-7.
[13] 易宗鑫, 李小强, 潘存良, 沈正章. TC4钛合金筒形收口件超塑胀形数值模拟及试验研究[J]. 材料导报, 2022, 36(18): 21040245-8.
[14] 杨瑞, 刘绍宏, 朱海澄, 孙旭东, 刘满门, 崔浩, 陈家林. 电接触材料电弧侵蚀研究进展[J]. 材料导报, 2022, 36(17): 20070113-7.
[15] 张昌青, 师文辰, 罗德春, 王树文, 刘晓, 崔国胜, 陈波阳, 张忠科, 辛舟, 芮执元. 锥形端面对铝/钢连续驱动摩擦焊温度场的数值模拟研究[J]. 材料导报, 2022, 36(15): 21040043-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed