Please wait a minute...
材料导报  2022, Vol. 36 Issue (17): 20070113-7    https://doi.org/10.11896/cldb.20070113
  金属与金属基复合材料 |
电接触材料电弧侵蚀研究进展
杨瑞1, 刘绍宏1,*, 朱海澄1, 孙旭东1,2,*, 刘满门3, 崔浩3, 陈家林3
1 东北大学材料科学与工程学院,沈阳 110819
2 大连大学环境与化学工程学院,辽宁 大连 116622
3 昆明贵金属研究所,昆明 650106
Research Progress on the Arc Erosion of Electrical Contact Materials
YANG Rui1, LIU Shaohong1,*, ZHU Haicheng1, SUN Xudong1,2,*, LIU Manmen3, CUI Hao3, CHEN Jialin3
1 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, Liaoning, China
3 Kunming Institute of Precious Metals, Kunming 650106, China
下载:  全 文 ( PDF ) ( 5245KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在电力系统、航空航天、汽车电子、家用电器、通讯设备等领域中,电触头承担着电能和信号传递的重任,被称为开关电器的“心脏”。电接触材料是制备电触头的先进功能材料,其性能直接关系着电触头的功能可靠性。电接触材料的电弧侵蚀是当前电接触领域亟待解决的问题之一。
由于服役环境严苛且影响因素众多,电接触材料的电弧侵蚀过程非常复杂。研究人员做了大量的实验和数值模拟工作,为揭示电弧侵蚀本质、开发新型电接触材料、提高电触头可靠性和延长其寿命提供了一定的理论依据和实际参考。
在实验研究方面,研究者通过多种表征技术手段,对电弧的运动特性、触头的损耗与转移、电触头表面形貌和成分变化等现象进行观测和表征,描述并解释了电接触材料的电弧侵蚀行为。在数值模拟方面,研究工作建立了大量多尺度多物理场模型,从微观尺度对材料进行成分设计,计算了材料性能参数,从介观尺度模拟了熔池组织结构演变过程,从宏观尺度进行了电弧与材料交互作用、触头熔池动力学过程及触头失效过程等方面的仿真计算。
本文简述了电接触材料电弧侵蚀作用下的基本物理过程,从实验和数值模拟两个方面综述了电弧侵蚀研究国内外的主要成果,指出当前研究存在的问题并进行了展望,提出构建多尺度耦合多物理场电弧侵蚀模型是未来的重点发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨瑞
刘绍宏
朱海澄
孙旭东
刘满门
崔浩
陈家林
关键词:  电接触材料  电弧侵蚀  数值模拟  材料转移    
Abstract: Electrical contacts are core components of switch devices used in power systems, aerospace, automotive electronics, household appliances and communication equipment. The arc erosion of electrical contact materials has always been one of the crucial problems in electrical reliability.
Arc erosion is a complex process, with varied factors and extreme service environments. Much work has been done to investigate the essence of arc erosion, develop new electrical contact materials, and enhance the reliability and life of contacts.
In the experimental aspect, the electrical contacts' arc motion, material loss and transfer, morphology evolution, and composition changes were investigated through various characterization methods. In the numerical simulation aspect, the multi-scale and multi-physics models were used to calculate the material parameters and simulate the process of material-arc interactions, molten pool dynamic, and electric contact failure.
This article states the physical process of the arc erosion of electrical contact materials, and reviews its experiment and numerical simulation research. Existing problems are discussed. The future trend is to build a coupling erosion model with the multi-scale and multi-physical field.
Key words:  electrical contact materials    arc erosion    simulation model    material transfer
出版日期:  2022-09-10      发布日期:  2022-09-10
ZTFLH:  TM504  
基金资助: 云南省重大科技专项(2018ZE001);教育部基本科研业务费项目(N2002007);国家自然科学基金(51977027;51872033;51967008);稀贵金属综合利用新技术国家重点实验室开放课题(SKL-SPM-202014;SKL-SPM-202015)
通讯作者:  *liush@smm.neu.edu.cn;xdsun@mail.neu.edu.cn   
作者简介:  杨瑞,2014年6月毕业于东北大学,获得工学学士学位。现为东北大学材料科学与工程学院博士研究生,在孙旭东教授的指导下进行研究。目前主要研究方向为银基电接触材料。
刘绍宏,2010年毕业于东北大学,获工学博士学位。现为东北大学材料科学与工程学院材料系副教授,主要研究方向为银基复合材料。已在Journal of Materials Chemistry A、Langmuir、CrystEngComm等国内外学术期刊和会议上发表论文38篇,SCI收录24篇(第一作者文章最高影响因子8.87),EI收录9篇;获授权专利9项。
孙旭东,东北大学佛山研究生院教授、博士研究生导师。入选国家杰出青年基金计划、国家首届新世纪百千万人才工程、教育部创新团队发展计划、国家教育部跨世纪优秀人才培养计划等。主要研究方向为粉体合成、陶瓷复合材料、贵金属材料。承担和完成国家自然科学基金(国家杰出青年科学基金和国家自然科学基金重大项目子课题、重点、面上项目等12项)、国家“863”计划、国家教育部创新团队发展计划、国防科工委军工项目等30余项科研课题。在Acta Mater.、Chem. Mater.等国内外刊物上发表论文300余篇。获得国家发明专利授权38项。
引用本文:    
杨瑞, 刘绍宏, 朱海澄, 孙旭东, 刘满门, 崔浩, 陈家林. 电接触材料电弧侵蚀研究进展[J]. 材料导报, 2022, 36(17): 20070113-7.
YANG Rui, LIU Shaohong, ZHU Haicheng, SUN Xudong, LIU Manmen, CUI Hao, CHEN Jialin. Research Progress on the Arc Erosion of Electrical Contact Materials. Materials Reports, 2022, 36(17): 20070113-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070113  或          http://www.mater-rep.com/CN/Y2022/V36/I17/20070113
1 Xu Z H. Appliance theory foundation, China Machine Press, China, 2014 (in Chinese).
许志红.电器理论基础, 机械工业出版社, 2014.
2 Zhai G F, Bo K, Zhou X, et al. Transactions of China Electrotechnical Society, 2017, 32(22), 251 (in Chinese).
翟国富, 薄凯, 周学, 等. 电工技术学报, 2017, 32(22), 251.
3 Wang Q P. Electric and arc theory, China Machine Press, China, 1991 (in Chinese).
王其平.电器电弧理论, 机械工业出版社, 1991.
4 Chen Z K, Mizukoshi H, Sawa K. IEEE Transactions on Components Packaging and Manufacturing Technology: Part A, 1994, 17(1), 113.
5 Zhang X, Ren W, Zheng Z, et al. IEEE Access, 2019, 7, 133079.
6 Chen L C. Electrical contacts principles and applications, China Machine Press, China, 1988 (in Chinese).
程礼椿.电接触理论及应用, 机械工业出版社, 1988.
7 Rong M Z. Electric contact theory, China Machine Press, China, 2004 (in Chinese).
荣命哲.电接触理论, 机械工业出版社, 2004.
8 Chen Z K, Sawa K. In: Conference Record of Proceedings of the Forty-Second IEEE Holm Conference on Electrical Contacts. Joint with the 18th International Conference on Electrical Contacts. Chicago, IL, 1996, pp. 238.
9 Chen Z K, Witter G J. In: Conference Record of the 2012 IEEE 58th Holm Conference on Electrical Contacts (Holm). Portland, OR, 2012, pp. 1.
10 Li H, Wang X, Guo X, et al. Materials and Design, 2017, 114, 139.
11 Wu C, Yi D, Weng W, et al. Transactions of Nonferrous Metals Society of China, 2016, 26, 185.
12 Wang D D, Tian W B, Ding J X, et al. Journal of Alloys and Compounds, 2020, 820, 153136.
13 Liu X L, Cai Z B, Cui Y, et al. Journal of Physics D: Applied Physics, 2018, 51(12), 155302.
14 Rong M Z, Wu Y. Computing methodology of switchgears, Science Press, China, 2018 (in Chinese).
荣命哲, 吴翊.开关电器计算学, 科学出版社, 2018.
15 Zhou X, Cui X L, Zhai X Y. Low Voltage Apparatus, 2012(15), 6 (in Chinese).
周学, 崔行磊, 翟筱羿.电器与能效管理技术, 2012(15), 6.
16 Hasegawa M, Tokumitsu S. In: Conference Record of the 2016 IEEE 62nd Holm Conference on Electrical Contacts (Holm). Clearwater Beach, 2016, pp. 119.
17 Tokumitsu S, Hasegawa M. In: Conference Record of the 2018 IEEE Holm Conference on Electrical Contacts. Albuquerque, NM, 2018, pp. 87.
18 Tokumitsu S, Hasegawa M. In: Conference Record of 2019 IEEE Holm Conference on Electrical Contacts. Milwaukee, WI, 2019, pp. 95.
19 Lin R, Wang L, Shi W, et al. IEEE Transactions on Plasma Science, 2018, 46(8), 3047.
20 Wu C, Zhao Q, Li N, et al. Journal of Alloys and Compounds, 2018, 766, 161.
21 Swingler J. IET Science Measurement & Technology, 2011, 5(2), 37.
22 Li H, Wang X, Liu Y, et al. Vacuum, 2017, 135, 55.
23 Xi Y, Wang X, Zhou Z, et al. Transactions of Nonferrous Metals Society of China, 2019, 29(5), 1046.
24 Li H, Wang X,Xi Y, et al. Materials and Design, 2017, 121, 85.
25 Ambier J, Bourda C, Jeannot D, et al. IEEE Transactions on Components, Hybrids and Manufacturing Technology, 1991, 14(1), 153.
26 Jeannot D, Pinard J, Ramoni P, et al. IEEE Transactions on Components, Packaging and Manufacturing Technology: Part A, 1994, 17(1), 17.
27 Ren J J, Wan J W, Sun M, et al. Low Voltage Apparatus, 1996(6), 8 (in Chinese).
任俊杰, 万江文, 孙明, 等. 低压电器, 1996(6), 8.
28 Lin Z J, Liu S H, Li J G, at al. Materials and Design, 2016, 108, 640.
29 Lin Z, Fan S, Liu M, et al. Journal of Alloys and Compounds, 2019, 788, 163.
30 Yang R, Liu S, Chen J, et al. Ceramics International, 2019, 45(2), 1881.
31 Chen Q, Liang S, Wang F, et al. Vacuum, 2018, 149, 256.
32 Ding J, Tian W, Wang D, et al. Corrosion Science, 2019, 156, 147.
33 Ding J X, Tian W B, Wang D D, et al. Acta Metallurgica Sinica, 2019, 55(5), 627 (in Chinese).
丁健翔, 田无边, 汪丹丹, 等.金属学报, 2019, 55(5), 627.
34 Zhou K, Chen W, Feng P, et al. Journal of Alloys and Compounds, 2020, 820, 153123.
35 Wei Z, Zhang L, Yang H, et al. Journal of Materials Research, 2016, 31(1), 468.
36 Wu Q, Xu G, Yuan M, et al. Journal of Materials Science: Materials in Electronics, 2020, 31, 2497.
37 Ding J, Tian W, Wang D, et al. Journal of Alloys and Compounds, 2019, 785, 1086.
38 Chen J C, Yu J, Li J T, et al. Journal of Kunming University of Science and Technology (Natural Science Edition), 2012, 37(4), 26 (in Chinese).
陈敬超, 于杰, 黎敬涛, 等.昆明理工大学学报(自然科学版), 2012, 37(4), 26.
39 Zhang Y, Wang J, Zhang G, et al. IEEE Access, 2020, 8, 55471.
40 Chen L, Wang J Q, Zhu Y C, et al. Journal of Synthetic Crystals, 2019, 48(11), 2056 (in Chinese).
陈令, 王景芹, 朱艳彩, 等.人工晶体学报, 2019, 48(11), 2056.
41 Wang J Q, Kang H L, Zhang Y. Advances in Materials Science and Engineering, 2018, 2018, 1.
42 Li W, Shao W, Chen Q, et al. Journal of Applied Physics, 2019, 125(22), 225303.
43 Li W, Shao W, Chen Q, et al. Physical Chemistry Chemical Physics, 2018, 20(23), 15618.
44 Rai A, Markl M, Krner C. Computational Materials Science, 2016, 124, 37.
45 Chen J C. Mechanism and properties of AgSnO2 composite fabricated by reactive synthesis. Ph.D. Thesis, Kunming University of Science and Technology, China, 2008 (in Chinese).
陈敬超. 反应合成银氧化锡复合材料的合成机制与性能研究. 博士学位论文, 昆明理工大学, 2008.
46 Chen J, Feng J, Xiao B, et al. Journal of Materials Science & Technology, 2010, 26(1), 49.
47 Yu J, Chen J C, Zhou X L, et al. Journal of Materials Engineering, 2010(3), 8 (in Chinese).
于杰, 陈敬超, 周晓龙, 等.材料工程, 2010(3), 8.
48 Nakagawa Y, Yoshioka Y. IEEE Transactions on Components, Hybrids and Manufacturing Technology, 1978, 1(1), 99.
49 Sun M, Wang Q P. Journal of Xi'an Jiaotong University, 1995, 29(3), 13 (in Chinese).
孙明, 王其平.西安交通大学学报, 1995, 29(3), 13.
50 Mesyats G A, Uimanov I V. IEEE Transactions on Plasma Science, 2015, 43(8), 2241.
51 Liao X, Zhou X, Bo K, et al. In: Conference Record of the 2018 IEEE Holm Conference on Electrical Contacts. Albuquerque, NM, 2018, pp. 56.
52 Wu X X, Li Z B. Proceedings of the CSEE, 2003, 23(6), 96 (in Chinese).
吴细秀, 李震彪.中国电机工程学报, 2003, 23(6), 96.
53 Anthony B M. Journal of Physics D: Applied Physics, 2011, 44, 194009.
54 Wu Y X, Yang Z F, Gao G Q, et al. High Voltage Engineering, 2019, 45(7), 2276 (in Chinese).
伍玉鑫, 杨泽锋, 高国强, 等.高电压技术, 2019, 45(7), 2276.
55 Wang Z, Wang Y. Journal of Alloys and Compounds, 2019, 774, 1046.
56 Wang Z, Zhang X, Jiang S, et al. Journal of Alloys and Compounds, 2020, 828, 154412.
57 Cui X L. Research on contact erosion mechanism and material transfer characteristics under direct current arc. Ph.D. Thesis, Harbin Institute of Technology, China, 2008 (in Chinese).
崔行磊. 直流电弧作用下触头材料的侵蚀机理和转移特性研究. 博士学位论文, 哈尔滨工业大学, 2014.
[1] 王兆, 张新虎, 王召浩, 王冠, 惠永博, 郑伟, 丁阳, 朱丽兵, 邓勇军, 傅先刚, 恽迪, 柳文波. 基于MOOSE平台的UO2燃料性能分析[J]. 材料导报, 2022, 36(7): 21040019-7.
[2] 徐洲, 李晓延, 王小鹏, 王海东. 组合热源模型在焊接模拟中的应用现状与展望[J]. 材料导报, 2022, 36(6): 20070081-6.
[3] 崔朝兴, 董世运, 胡效东, 闫世兴, 姜浩涌. 激光熔化沉积成形过程数值模拟研究现状[J]. 材料导报, 2022, 36(2): 20040221-6.
[4] 张昌青, 师文辰, 罗德春, 王树文, 刘晓, 崔国胜, 陈波阳, 张忠科, 辛舟, 芮执元. 锥形端面对铝/钢连续驱动摩擦焊温度场的数值模拟研究[J]. 材料导报, 2022, 36(15): 21040043-7.
[5] 张芳芳, 周蕊, 孙毅刚, 刘兵飞, 杜春志, 洪彬. 基于细观相变和黏弹性本构模型的SMP热力循环数值模拟对比分析[J]. 材料导报, 2022, 36(15): 21030129-7.
[6] 潘诗婷, 李凯, 张超慧, 史才军. 粗骨料形状对混凝土氯离子扩散性能影响的数值模拟研究[J]. 材料导报, 2022, 36(10): 21030145-9.
[7] 范凌云, 高婧, 李锦峰, 周海俊. 层压型CFRP环带疲劳试验中接触面温度场分析[J]. 材料导报, 2022, 36(1): 20110148-7.
[8] 唐宏波, 解永强, 张红梅, 王宏杰, 胡北辰. 新型五温区碲化汞单晶炉热场结构数值模拟[J]. 材料导报, 2021, 35(z2): 121-126.
[9] 赵金猛, 卢林, 王静荣, 张亮, 吴文恒, 朱冬, 郭帅东, 肖从越. 激光选区熔化Ti6Al4V在介观尺度下的热力学行为与缺陷:数值模拟与实验验证[J]. 材料导报, 2021, 35(z2): 410-416.
[10] 孙鹏飞, 吕平, 黄微波, 张锐, 方志强, 桑英杰. 喷涂抗爆型聚脲钢筋混凝土板抗爆性能研究[J]. 材料导报, 2021, 35(z2): 642-648.
[11] 汪海波, 于海群, 童水光, 唐宁, 徐永亮. 引晶直径对扩肩形态影响的数值模拟及实验研究[J]. 材料导报, 2021, 35(Z1): 186-188.
[12] 莫东鸣. 高Prandtl数双层流体的热毛细对流数值模拟[J]. 材料导报, 2021, 35(Z1): 302-305.
[13] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[14] 张铃, 杨钦如, 余梦, 黄锐明, 程其进. CuSCN作为石墨烯/硅异质结太阳能电池无机界面层的数值模拟[J]. 材料导报, 2021, 35(4): 4001-4006.
[15] 陈克选, 王向余, 李宜炤, 陈彦强, 杜茵茵. 水冷条件下WAAM温度场的数值模拟研究[J]. 材料导报, 2021, 35(4): 4165-4169.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed