Please wait a minute...
材料导报  2022, Vol. 36 Issue (15): 21040043-7    https://doi.org/10.11896/cldb.21040043
  金属与金属基复合材料 |
锥形端面对铝/钢连续驱动摩擦焊温度场的数值模拟研究
张昌青1,2,*, 师文辰2, 罗德春3, 王树文2, 刘晓2, 崔国胜2, 陈波阳2, 张忠科2, 辛舟3, 芮执元3
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 兰州理工大学材料科学与工程学院,兰州 730050
3 兰州理工大学机电工程学院,兰州 730050
Numerical Simulation Study on Temperature Field of Continuous Drive Friction Welding of Aluminum/Steel with Conical Terminal
ZHANG Changqing1,2,*, SHI Wenchen2, LUO Dechun3, WANG Shuwen2, LIU Xiao2, CUI Guosheng2, CHEN Boyang2, ZHANG Zhongke2, XIN Zhou3, RUI Zhiyuan3
1 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
3 School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 7579KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 接头结构设计是连续驱动摩擦焊的一项重要工艺措施,对改善界面产热功率的不均匀性和提升接头力学性能有显著作用。本工作在钢侧待焊端面设计5°、10°、15°、20°、25°的锥度角,利用ABAQUS进行有限元分析,采用耦合的欧拉-拉格朗日方法,建立了焊接过程的三维热力耦合模型,分析了锥度大小对接头成型、温度场分布、塑性金属形成的变化规律,并开展焊接实验,验证了计算结果的准确性。结果表明:接头宏观形貌、轴向缩短量与实验结果吻合较好,计算温度与实测数据相对误差约为3.5%~4.8%,变化趋势相同;锥形结构使界面高温区域发生移动,5°与15°接头2/3R处温度最高,25°接头1/3R处温度最高,产热集中位置向界面中心移动,产热集中区域宽度变窄,塑性环的位置、宽度与计算的温度场具有较好的一致性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张昌青
师文辰
罗德春
王树文
刘晓
崔国胜
陈波阳
张忠科
辛舟
芮执元
关键词:  连续驱动摩擦焊  锥度接头  耦合的欧拉-拉格朗日法  数值模拟  温度场    
Abstract: The structural design of joint is an important process measure of continuous drive friction welding, which has a significant effect on improving the non-uniformity of heat generation power of interface and improving the mechanical properties of joint. This work designed 5°, 10°, 15°, 20°, 25° taper degree on the steel, analyzed finite element on ABAQUS, established the three-dimensional thermal-mechanical coupling model of welding process with the coupled Eulerian-Lagrangian method, analyzed the influence of the taper degree on the change law of joint forming, the temperature field distribution and the plastic metal forming, and carried out welding experiments to verify the accuracy of the calculation results. The results show that the macroscopic morphology and axial shortening of the joint are in good agreement with the experimental results. The relative error between the calculated temperature and the measured data is about 3.5%—4.8%, and the variation trends are the same. The taper structure makes the high temperature area of the interface move, and the temperature at 2/3R of the 5° and 15° joints is the highest, while the temperature at 1/3R of the 25° joints is the highest. The heat concentration location moves towards the center of the interface, and the width of the heat concentration area becomes narrower. The position and the width of the plastic ring are in good agreement with the calculated temperature field.
Key words:  continuous drive friction welding    taper joint    coupled Eulerian-Lagrangian method    numerical simulation    temperature field
出版日期:  2022-08-10      发布日期:  2022-08-15
ZTFLH:  TG456.9  
基金资助: 国家自然科学基金(51961025)
通讯作者:  *zcq321@sina.com   
作者简介:  张昌青,兰州理工大学副研究员、硕士研究生导师。1993.9—1997.7获西北工业大学工学学士学位;2003.9—2007.7获兰州理工大学工学硕士学位;2010.9—2013.7获兰州理工大学工学博士学位;2012.1—2012.6到美国通用汽车轻金属研究所作访问学者。在国内外学术期刊上发表论文10余篇,申请国家发明专利10项,其中授权8项。从事先进材料的摩擦焊、钎焊及阻焊等方向的固相连接基础理论与应用技术研究。参加国家自然科学基金项目4项,参加及主持省部基金项目5项。
引用本文:    
张昌青, 师文辰, 罗德春, 王树文, 刘晓, 崔国胜, 陈波阳, 张忠科, 辛舟, 芮执元. 锥形端面对铝/钢连续驱动摩擦焊温度场的数值模拟研究[J]. 材料导报, 2022, 36(15): 21040043-7.
ZHANG Changqing, SHI Wenchen, LUO Dechun, WANG Shuwen, LIU Xiao, CUI Guosheng, CHEN Boyang, ZHANG Zhongke, XIN Zhou, RUI Zhiyuan. Numerical Simulation Study on Temperature Field of Continuous Drive Friction Welding of Aluminum/Steel with Conical Terminal. Materials Reports, 2022, 36(15): 21040043-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040043  或          http://www.mater-rep.com/CN/Y2022/V36/I15/21040043
1 Kearns W H. Welding handbook: resistance and solid state welding and other joining processes, American Welding Society, US, 1980, pp.56.
2 Li W, Vairis A, Preuss M, et al. International Materials Reviews, 2016, 61(2), 71.
3 Fukumoto S, Tsubakino H, Okita K, et al. Materials Science and Technology, 1999, 15(9), 1080.
4 Ashfaq M, Sajja N, Rafi H K, et al. Journal of Materials Engineering and Performance, 2013, 22(2), 376.
5 Alves E P, Toledo R C, Neto F P, et al. Journal of Aerospace Technology and Management, 2019, 11(10), 1068.
6 Cheng C J. Welding Journal, 1962, 41(12), 542.
7 Fu L, Duan L. Welding Journal, 1998, 77(5), 202.
8 D'Alvise L, Massoni E, Walløe S J. Journal of Materials Processing Technology, 2002, 125(3), 387.
9 Fu L, Du S G. Transactions of the China Welding Institution, 2001, 22(5), 87 (in Chinese).
傅莉, 杜随更.焊接学报, 2001, 22(5), 87.
10 Zhang Q Z, Zhang L W, Gui F L, et al. Journal of Plasticity Enginee-ring, 2005, 12(60), 109 (in Chinese).
张全忠, 张立文, 桂方亮, 等.塑性工程学报, 2005, 12(60), 109.
11 Li W Y. Aeronautical Manufacturing Technology, 2011 (2), 86 (in Chinese).
李文亚.航空制造技术, 2011 (2), 86.
12 Al-Badour F, Merah N, Shuaib A, et al. Journal of Materials Processing Technology, 2013, 213(8), 1433.
13 Kishta E E, Farid A, Darras B. Engineering Transactions, 2014, 62(4), 313.
14 Wang Y H. Numerical simulation of 1060 sluminum friction stir welding temperature field. Master's Thesis, Jiangsu University of Science and Technology, China, 2012 (in Chinese).
王艳辉. 1060铝搅拌摩擦焊温度场数值模拟. 硕士学位论文, 江苏科技大学, 2012.
15 Lin L, Zhi X D, Fan F, et.al. Journal of Vibration and Shock, 2014, 33(9), 153 (in Chinese).
林莉, 支旭东, 范锋, 等.振动与冲击, 2014, 33(9), 153.
16 Tan Z, Guo G W. Thermophysical properties of engineering alloys, Metallurgical Industry Press, China, 1994, pp. 115 (in Chinese).
谭真, 郭广文.工程合金热物理, 冶金出版社, 1994, pp.115.
17 Jin F, Li J, Liu P, et al. Journal of Manufacturing Processes, 2019, 46(10), 286.
18 Ning F Z, Cai M X. Friction welding, China Machine Press, China, 1983, pp. 86 (in Chinese)
宁斐章, 才荫先.摩擦焊, 机械工业出版社, 1983, pp.86.
19 Hasegawa M, Ieda T. Welding International, 1999, 13(9), 701.
20 Kimura M, Seo K, Kusaka M, et al. JSME International Journal, 2003, 46(3), 384.
[1] 王群, 李晨宇, 周忠华, 曹文, 周子吉, 孙慧慧, 黄悦, 沈志奇. 化学钢化前后玻璃表面裂纹扩展的实验比较与数值模拟[J]. 材料导报, 2023, 37(5): 21050255-5.
[2] 余国卿, 许永康, 王东亮, 牛勇, 司明达, 张茂, 龚攀, 王新云. 陶瓷颗粒增强Zr基非晶合金复合材料高温变形行为研究[J]. 材料导报, 2023, 37(1): 21110013-7.
[3] 王兆, 张新虎, 王召浩, 王冠, 惠永博, 郑伟, 丁阳, 朱丽兵, 邓勇军, 傅先刚, 恽迪, 柳文波. 基于MOOSE平台的UO2燃料性能分析[J]. 材料导报, 2022, 36(7): 21040019-7.
[4] 徐洲, 李晓延, 王小鹏, 王海东. 组合热源模型在焊接模拟中的应用现状与展望[J]. 材料导报, 2022, 36(6): 20070081-6.
[5] 肖颍杰, 石少卿, 刘盈丰, 陈首, 廖瑜. 聚脲钢板复合层抗枪弹侵彻性能研究[J]. 材料导报, 2022, 36(23): 22010187-7.
[6] 肖昌伟, 李文晓. 树脂传递模塑成型工艺复合材料孔隙表征和孔隙形成预测研究进展[J]. 材料导报, 2022, 36(23): 21100167-7.
[7] 刘宇, 张桂芳, 漆鑫, 施哲, 严鹏, 姜琦. 电磁悬浮熔炼金属合金的研究进展:应用和数值模拟[J]. 材料导报, 2022, 36(21): 20080265-8.
[8] 刘玉宝, 王举金, 杨文, 刘风琴, 李亚琼, 崔凌霄, 张洋. LaFe合金在底吹氩钢包内熔化混匀的数值模拟研究[J]. 材料导报, 2022, 36(21): 21050172-7.
[9] 崔朝兴, 董世运, 胡效东, 闫世兴, 姜浩涌. 激光熔化沉积成形过程数值模拟研究现状[J]. 材料导报, 2022, 36(2): 20040221-6.
[10] 赵鸿飞, 郭丽丽, 赵颖, 苑菁茹, 运新兵. AZ31镁合金板材单双杆连续挤压变形过程及组织性能的对比[J]. 材料导报, 2022, 36(18): 21040305-7.
[11] 易宗鑫, 李小强, 潘存良, 沈正章. TC4钛合金筒形收口件超塑胀形数值模拟及试验研究[J]. 材料导报, 2022, 36(18): 21040245-8.
[12] 杨瑞, 刘绍宏, 朱海澄, 孙旭东, 刘满门, 崔浩, 陈家林. 电接触材料电弧侵蚀研究进展[J]. 材料导报, 2022, 36(17): 20070113-7.
[13] 杨一, 庞玉华, 孙琦, 董少若, 刘东. 考虑实际边界条件的辊式淬火过程温度场数值模拟[J]. 材料导报, 2022, 36(15): 21050259-7.
[14] 张芳芳, 周蕊, 孙毅刚, 刘兵飞, 杜春志, 洪彬. 基于细观相变和黏弹性本构模型的SMP热力循环数值模拟对比分析[J]. 材料导报, 2022, 36(15): 21030129-7.
[15] 潘诗婷, 李凯, 张超慧, 史才军. 粗骨料形状对混凝土氯离子扩散性能影响的数值模拟研究[J]. 材料导报, 2022, 36(10): 21030145-9.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed