Please wait a minute...
材料导报  2022, Vol. 36 Issue (23): 21100167-7    https://doi.org/10.11896/cldb.21100167
  高分子与聚合物基复合材料 |
树脂传递模塑成型工艺复合材料孔隙表征和孔隙形成预测研究进展
肖昌伟, 李文晓*
同济大学航空航天与力学学院,上海 200092
Research Progress of Void Characterization and Filling-induced Void Prediction of RTM-prepared Composites
XIAO Changwei, LI Wenxiao*
School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
下载:  全 文 ( PDF ) ( 19911KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 复合材料制造缺陷严重影响制品的力学性能,通过对缺陷形成规律的探究,可以有效降低缺陷形成,提高制品力学性能。孔隙在各类工艺中有着较高的形成概率,在树脂传递模塑成型(RTM)工艺中更是如此,孔隙也因此成为被研究最多的制造缺陷。本文从试验的角度介绍了RTM工艺中形成的孔隙的特征以及孔隙在线监测法、密度法、超声波法、显微镜法和显微CT法等孔隙表征手段,描述了RTM工艺孔隙的形成机理,并综述了充模过程中孔隙形成过程的数值模拟研究与应用现状,最后展望了RTM工艺复合材料孔隙预测的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖昌伟
李文晓
关键词:  树脂传递模塑成型工艺  孔隙  试验研究  数值模拟  孔隙表征    
Abstract: The manufacturing defects of composites can seriously affect the mechanical properties of composites. By exploring the formation law of manufacturing defects, the formation of defects can be effectively reduced, then the mechanical properties of products can be improved. Due to the high formation probability in various processes, especially in the resin transfer molding (RTM) process, voids have been the most studied manufacturing defects. This paper briefly introduces the characteristics of void formed in the RTM process and research progress of techniques for void characterization such as online monitoring method, density method, ultrasonic method, microscope method and micro-CT method, then the void formation mechanism of RTM process is elaborated. The research progress of void formation process based on numerical simulation is summarized. Finally, the challenges and outlook of the numerical simulation on the void formation of the RTM process are outlined.
Key words:  resin transfer molding process    void    experimental research    numerical simulation    void characterization
发布日期:  2022-12-09
ZTFLH:  TB332  
基金资助: 航空基金项目(2015ZF38007);中央高校基本科研业务费专项资金项目(22120180133)
通讯作者:  *wenxiaoli@tongji.edu.cn   
作者简介:  肖昌伟,2019年6月毕业于同济大学,获得工学学位。2019年9月至今就读于同济大学,攻读工学硕士学位,在李文晓副教授的指导下进行研究。主要从事RTM工艺复合材料的制备研究。
李文晓,同济大学航空航天与力学学院副教授。1990年于国防科大获本科学位,1993年于上海交通大学获硕士学位,2000年于上海交通大学获博士学位;主要研究方向为树脂基复合材料;发表论文60余篇,获发明专利授权7项。
引用本文:    
肖昌伟, 李文晓. 树脂传递模塑成型工艺复合材料孔隙表征和孔隙形成预测研究进展[J]. 材料导报, 2022, 36(23): 21100167-7.
XIAO Changwei, LI Wenxiao. Research Progress of Void Characterization and Filling-induced Void Prediction of RTM-prepared Composites. Materials Reports, 2022, 36(23): 21100167-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100167  或          http://www.mater-rep.com/CN/Y2022/V36/I23/21100167
1 Yang H, Liu X Y, Shi J W, et al. Chinese Journal of Applied Mechanics, 2020, 37(3), 1191 (in Chinese).
杨慧, 刘兴宇, 史俊伟, 等. 应用力学学报, 2020, 37(3), 1191.
2 Barari B, Simacek P, Yarlagadda S, et al. International Journal of Material Forming, 2019, 13(1), 143.
3 Hu W, Grunenfelder L K, Centea T, et al. Journal of Composite Materials, 2018, 52(21), 2847.
4 Zhang D, Heider D, Gillespie J W. Journal of Thermoplastic Composite Materials, 2015, 30(8), 1103.
5 Netzel C, Hoffmann D, Battley M, et al. Composites Part A: Applied Science and Manufacturing, 2021, 151, 106636.
6 Matsuzaki R, Seto D, Todoroki A, et al. Advanced Composite Materials, 2013, 23(2), 99.
7 Matsuzaki R, Naito M, Seto D, et al. Express Polymer Letters, 2016, 10(10), 860.
8 Zhao C, Yang B, Wang S, et al. Applied Composite Materials, 2019, 26(4), 1121.
9 Lystrup C, George A, Zobell B, et al. Journal of Composite Materials, 2020, 55(6), 775.
10 Wen Q H, Meng J Y, Gong C. Fiber Resinforced Plastics/Composites, 2016(7), 32 (in Chinese).
文琼华, 孟江燕, 龚楚. 玻璃钢 /复合材料, 2016(7), 32.
11 Amirkhosravi M, Pishvar M, Hamidi Y K, et al. In:Proceedings of the 35th International Conference of the Polymer Processing Society (Pps-35). DOI:org/10. 1063/1. 5142947.
12 Xiao P, Liu W P, Liu K. Aeronautical Manufacturing Technology, 2016(4), 48 (in Chinese).
肖鹏, 刘卫平, 刘奎. 航空制造技术, 2016(4), 48.
13 Neuenschwander J, Furrer R, Roemmeler A. Polymer Testing, 2016, 56, 379.
14 Hudson T B, Hou T H, Grimsley B W, et al. Structural Health Monitoring, 2016, 16(2), 164.
15 Pelivanov I, O'donnell M. Composites Part A: Applied Science and Manufacturing, 2015, 79, 43.
16 Bodaghi M, Cristóvão C, Gomes R, et al. Composites Part A: Applied Science and Manufacturing, 2016, 82, 88.
17 Hamidi Y K, Aktas L, Altan M C. Composites Science and Technology, 2005, 65(7-8), 1306.
18 Mehdikhani M, Nguyen N Q, Straumit I, et al. IOP Conference Series: Materials Science and Engineering, DOI:10. 1088/1757-899X/406/1/012010.
19 Fu Y, Yao X, Gao X. Composites Part A: Applied Science and Manufacturing, 2021, 147, 106450.
20 Tretiak I, Smith R A. Composites Part A: Applied Science and Manufacturing, 2019, 123, 10.
21 Wen Y, Zhang S, Zhang Y. IEEE Access, 2019, 7, 134330.
22 Pupin C, Ross A, Dubois C, et al. Composites Part A: Applied Science and Manufacturing, 2016, 94, 146.
23 Pupin C, Ross A, Dubois C, et al. Composites Part A: Applied Science and Manufacturing, 2017, 100, 294.
24 Hergan P, Fauster E, Perkonigg D, et al. Advanced Manufacturing: Polymer & Composites Science, 2020, 6(1), 29.
25 He P, Zhao W, Yang B, et al. Materials Research Express, DOI:org/10. 1088/2053-1591/ac1532.
26 Gebart B R. Journal of Composite Materials, 1992, 26(8), 1100.
27 Zhang Y W, Faghri A. Numerical Heat Transfer, Part A: Applications, 2001, 39(3), 227.
28 Young W B. Journal of Composite Materials, 1996, 30(11), 1191.
29 Foley M E, Gillespie J W. Journal of Composite Materials, 2005, 39(12), 1045.
30 Chang C Y, Shih M S. Journal of Reinforced Plastics and Composites, 2003, 22(16), 1437.
31 Shao X M. Acta Materiae Compositae Sinica, 2003, 20(3), 57 (in Chinese).
邵雪明. 复合材料学报, 2003, 20(3), 57.
32 Feng W, Wang J H, Meng Z H. Journal of Wuhan University of Technoloy, 2004, 26(11), 5 (in Chinese).
冯武, 王继辉, 孟志华. 武汉理工大学学报, 2004, 26(11), 5.
33 Hu J, Liu Y, Shao X. Composites Part A: Applied Science and Manufacturing, 2004, 35(5), 595.
34 Jin T G, Yang B, Li J. Acta Materiae Compositae Sinica, 2014, 31(3), 725 (in Chinese).
金天国, 杨波, 李建. 复合材料学报, 2014, 31(3), 725.
35 Devalve C, Pitchumani R. Composites Part A: Applied Science and Manufacturing, 2013, 51, 22.
36 Yang B, Bi F Y, Wang S L, et al. Express Polymer Letters, 2020, 14(1), 77.
37 Yang B. Research on numerical simulation and defect prediction for the filling progress of resin transfer molding. Ph. D. Thesis, Harbin Institute of Technology, China, 2015 (in Chinese).
杨波. 复合材料RTM工艺充模过程数值仿真与缺陷预测研究. 博士学位论文, 哈尔滨工业大学, 2015.
38 Yang B, Jin T G, Bi F Y, et al. Composites Part A: Applied Science and Manufacturing, 2015, 68, 10.
39 Ren J, Ouyang J, Jiang T. International Journal of Heat and Mass Transfer, 2015, 85, 543.
40 Lu G. SPH simulation for the injection molding flow of automotive fiber reinforced composites. Ph. D. Thesis, Hunan University. China, 2017 (in Chinese).
卢钢. 车用纤维增强复合材料注射成型充填过程的SPH模拟. 博士学位论文, 湖南大学, 2017.
41 Lu G, He L P, Chen D C, et al. Journal of Reinforced Plastics and Composites, 2017, 36(19), 1431.
42 Yashiro S, Sasaki H, Sakaida Y. Composites Part A: Applied Science and Manufacturing, 2012, 43(10), 1754.
43 Yashiro S, Okabe T, Matsushima K. Advanced Composite Materials, 2012, 20(6), 503.
44 Okabe T, Matsutani H, Honda T, et al. Composites Part A: Applied Science and Manufacturing, 2012, 43(10), 1765.
45 Yashiro S, Nakashima D, Oya Y, et al. Composites Part A: Applied Science and Manufacturing, 2019, 121, 283.
[1] 姚维, 郑伯坤, 邱景平, 黄腾龙, 尹旭岩. 外加剂对膨胀充填材料性能的影响[J]. 材料导报, 2022, 36(Z1): 20070045-5.
[2] 陈景, 杨长辉, 高育欣, 杨文, 王福涛, 刘明, 曾超. 微交联降粘型聚羧酸减水剂的合成及其在低水胶比体系中的作用[J]. 材料导报, 2022, 36(9): 20090167-8.
[3] 刘方, 张昆昆, 罗滔, 马卫卫, 蒋伟. 复杂环境因素下纳米改性混凝土冻融损伤研究[J]. 材料导报, 2022, 36(8): 20100024-5.
[4] 王兆, 张新虎, 王召浩, 王冠, 惠永博, 郑伟, 丁阳, 朱丽兵, 邓勇军, 傅先刚, 恽迪, 柳文波. 基于MOOSE平台的UO2燃料性能分析[J]. 材料导报, 2022, 36(7): 21040019-7.
[5] 徐洲, 李晓延, 王小鹏, 王海东. 组合热源模型在焊接模拟中的应用现状与展望[J]. 材料导报, 2022, 36(6): 20070081-6.
[6] 周莹, 穆松, 蒲春平, 周霄骋, 李勇泉, 蔡景顺, 谢德擎. 隧道初支混凝土抗冲刷溶蚀技术评价及作用机理[J]. 材料导报, 2022, 36(4): 20120200-8.
[7] 肖颍杰, 石少卿, 刘盈丰, 陈首, 廖瑜. 聚脲钢板复合层抗枪弹侵彻性能研究[J]. 材料导报, 2022, 36(23): 22010187-7.
[8] 刘宇, 张桂芳, 漆鑫, 施哲, 严鹏, 姜琦. 电磁悬浮熔炼金属合金的研究进展:应用和数值模拟[J]. 材料导报, 2022, 36(21): 20080265-8.
[9] 刘玉宝, 王举金, 杨文, 刘风琴, 李亚琼, 崔凌霄, 张洋. LaFe合金在底吹氩钢包内熔化混匀的数值模拟研究[J]. 材料导报, 2022, 36(21): 21050172-7.
[10] 崔朝兴, 董世运, 胡效东, 闫世兴, 姜浩涌. 激光熔化沉积成形过程数值模拟研究现状[J]. 材料导报, 2022, 36(2): 20040221-6.
[11] 王志航, 许金余, 刘高杰, 朱从进. 紫外老化对聚合物基复合材料剪切性能及孔隙结构的影响[J]. 材料导报, 2022, 36(2): 20100143-6.
[12] 赵鸿飞, 郭丽丽, 赵颖, 苑菁茹, 运新兵. AZ31镁合金板材单双杆连续挤压变形过程及组织性能的对比[J]. 材料导报, 2022, 36(18): 21040305-7.
[13] 易宗鑫, 李小强, 潘存良, 沈正章. TC4钛合金筒形收口件超塑胀形数值模拟及试验研究[J]. 材料导报, 2022, 36(18): 21040245-8.
[14] 彭远胜, 欧孝夺, 姬凤玲. 铝土尾矿泡沫轻质土的物理力学性能及细观特征[J]. 材料导报, 2022, 36(17): 21030274-6.
[15] 杨瑞, 刘绍宏, 朱海澄, 孙旭东, 刘满门, 崔浩, 陈家林. 电接触材料电弧侵蚀研究进展[J]. 材料导报, 2022, 36(17): 20070113-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed