Please wait a minute...
材料导报  2022, Vol. 36 Issue (21): 20080265-8    https://doi.org/10.11896/cldb.20080265
  金属与金属基复合材料 |
电磁悬浮熔炼金属合金的研究进展:应用和数值模拟
刘宇1, 张桂芳1,2,*, 漆鑫1, 施哲1,2, 严鹏1, 姜琦1
1 昆明理工大学冶金与能源工程学院,昆明 650093
2 云南省高校复杂铁资源清洁冶金重点实验室,昆明 650093
Research Progress on Application and Numerical Simulation of Electromagnetic Levitation Melting Metal Alloy
LIU Yu1, ZHANG Guifang1,2,*, QI Xin1, SHI Zhe1,2, YAN Peng1, JIANG Qi1
1 Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
2 Yunnan Provincial Key Laboratory of Complex Iron Resources for Clean Metallurgy, Kunming 650093, China
下载:  全 文 ( PDF ) ( 6015KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 工业制造的快速发展对多元合金材料的质量和性能提出了更高的要求,然而传统的合金熔炼方式难以处理高纯度、高活性、高熔点的合金材料。与传统的方法相比,电磁悬浮(EML)作为一种微重力条件下的新型无接触式的熔炼技术,在熔炼金属合金时能够达到深过冷度和快速冷却,显著改变合金晶体的组织形貌,使晶体向质量高、性能优的合金状态发展。因此,近年来电磁悬浮技术熔炼金属合金技术受到了研究者们极大的关注。
研究者们已经利用EML技术定量测量了多元合金的比热、密度、粘度、表面张力等性质;通过观测过冷悬浮熔滴,结合振荡液滴法、落滴式量热法、样品耦合电子法等可以测量较大温度范围内多元合金的热物理性质。研究表明:熔体内部的不可见流动现象和传输现象采用数值建模技术来进行模拟研究,可展现熔滴的流动和表面变形特征,并有助于揭示实验结果。国内外学者对电磁悬浮在多元合金熔炼应用和模拟进行了大量研究后发现: (1)合金熔炼过程中耐火材料不可避免会对液态合金造成污染;(2)过冷度、冷却速度对金属合金凝固过程具有较大影响,但缺少有效的研究方法;(3)热物理性质对合金的宏观性能有很大的影响,且能作为制造过程模拟优化输入参数,但相关文献资料较少。
本文归纳了EML熔炼金属合金的研究进展,分别对其凝固过程和性质测量等的实验研究与悬浮熔滴形状和内部流动规律等的数值模拟进行了总结介绍,讨论了目前电磁悬浮熔炼技术存在的问题和未来的突破方向,为液态合金性质研究及其数值模拟提供了参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘宇
张桂芳
漆鑫
施哲
严鹏
姜琦
关键词:  电磁悬浮  凝固过程  热物理性质  数值模拟    
Abstract: The rapid development of industrial manufacturing has put forward higher requirements for the quality and performance of multi-element alloys. However, it's difficult to process high-purity, high-activity and high-melting alloys by conventional melting methods. Compared with traditional methods,electromagnetic levitation (EML), as a non-contact melting technology under microgravity conditions, can achieve substantial undercooling and rapid cooling for metal alloys solidifying, and can significantly change the crystal morphology, which can make the crystals develop to the alloy with excellent quality and performance. Therefore, EML technology for melting metal alloy has aroused great concern among researchers.
Researchers have quantitatively measured the specific heat, density, viscosity, surface tension and other properties of multi-element alloys by EML technology. By observing the supercooled levitated molten droplets, combining the oscillating droplet method, the falling drop calorimetry method and the coupled electron method, the thermophysical properties over a wide temperature range can be measured. Studies have indicated that numerical modeling techniques are now used to simulate the flow phenomena and transport phenomena inside the molten droplet, which permits characterization of the flow as well as surface deformation of the droplet, and has facilitated revelation of the experimental results. According to a large number of studies of domestic and foreign researchers on the application and numerical simulation of electromagnetic levitation melting metal alloy, it can be found that: (i) refractory would inevitably pollute the liquid alloy in the alloy melting process; (ii) the undercooling and cooling rate have a great influence on the solidification process, but effective research methods are limited; (iii) the thermophysical properties affect greatly the macroscopic properties of the alloy, and can be used as input parameters for the simulation and optimization of the manufacturing process. However, there are few related publications.
The paper summarizes research progress with respect to EML of molten alloys, including solidification phenomena and other property measurements as well as numerical simulation studies about flow phenomena and transport phenomena inside the molten droplet. Problems of EML melting technology and future breakthrough directions are discussed, which provides a reference for future research and numerical simulation of liquid alloy properties.
Key words:  electromagnetic levitation    solidification process    thermophysical property    numerical simulation
出版日期:  2022-11-10      发布日期:  2022-11-03
ZTFLH:  TF19  
基金资助: 云南省科技厅重点国际科技合作专项(2018IA055);云南省教育厅科学研究基金项目(2021J0652)
通讯作者:  * guifangzhang65@163.com   
作者简介:  刘宇,2019年6月毕业于安徽工业大学,获得工学学士学位。现为昆明理工大学冶金与能源工程学院硕士研究生,在张桂芳教授的指导下进行研究,目前主要研究领域为电磁悬浮熔炼金属合金。
张桂芳,博士,昆明理工大学冶金与能源工程学院教授、博士研究生导师,加拿大多伦多大学合作教授。从事电磁场在冶金和材料制备中应用研究,出版《连续铸钢用电磁搅拌的理论与技术》《钛基材料制造》《钒的制造、提取和应用》等学术专著。主持和参加国家自然科学基金重点项目、国家科技支撑计划、国际合作项目等20余项。发表学术论文100余篇,其中被SCI/EI收录50余篇。
引用本文:    
刘宇, 张桂芳, 漆鑫, 施哲, 严鹏, 姜琦. 电磁悬浮熔炼金属合金的研究进展:应用和数值模拟[J]. 材料导报, 2022, 36(21): 20080265-8.
LIU Yu, ZHANG Guifang, QI Xin, SHI Zhe, YAN Peng, JIANG Qi. Research Progress on Application and Numerical Simulation of Electromagnetic Levitation Melting Metal Alloy. Materials Reports, 2022, 36(21): 20080265-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080265  或          http://www.mater-rep.com/CN/Y2022/V36/I21/20080265
1 Yu Z. Research on ultrasonic standing wave acoustic field characteristics using LDV measurement method. Master's Thesis, Harbin Institute of Technology, China, 2017 (in Chinese).
于震. 基于LDV测量方法的超声驻波声场特性的研究. 硕士学位论文, 哈尔滨工业大学, 2017.
2 Egry I, Holland-Moritz D. European Physical Journal Special Topics, 2011, 196(1), 131.
3 Gao L, Shi Z, Yang Y D, et al. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 2018, 49(4), 1985.
4 Wang Q, He M, Zhu X W, et al. Acta Metallurgica Sinica, 2018, DOI:10.11900/0412.1961.2017.00360 (in Chinese).
王强, 何明, 朱晓伟, 等.金属学报, 2018, DOI:10.11900/0412.1961.2017.00360.
5 Lohöfer G. Review of Scientific Instruments, 2018, 89(12), 124709.
6 Zhu Y Y, Li Q, He Y H, et al. Materials Reports A:Review Papers, 2009, 23(7), 78 (in Chinese).
朱玉英, 李强, 何云华, 等. 材料导报:综述篇, 2009, 23(7), 78.
7 Yan J H, Jian Z Y, Zhu M, et al. Acta Metallurgica Sinica, 2016, 52(8), 931 (in Chinese).
严军辉 坚增运, 朱满, 等. 金属学报, 2016, 52(8), 931.
8 Chang F E, Jian Z Y, Kazuhiko K. Foundry Technology, 2005, 26(10), 73 (in Chinese).
常芳娥, 坚增运, Kazuhiko K.铸造技术, 2005(10), 73.
9 Dong Z Q, Tu G F. Journal of the Chinese Rare Earth Society, 2008, 26(5), 584 (in Chinese).
董中奇, 涂赣峰. 中国稀土学报, 2008, 26(5), 584.
10 Xiao Y, Xu J F, Jian Z Y. Journal of Xi'an Technological University, 2020, 40(1), 70 (in Chinese).
肖颖,许军锋,坚增运. 西安工业大学学报, 2020, 40(1), 70.
11 Zhao L G, Si N C. Materials Reports, 2008, 22(S3), 374 (in Chinese).
赵罗根, 司乃潮. 材料导报, 2008, 22(S3), 374.
12 Zhu.Q F, Zhao Z H, Wang J, et al. Materials Review, 2007, 21(5),109 (in Chinese).
朱庆丰, 赵志浩, 王静, 等. 材料导报, 2007, 21(5),109.
13 Zhu J L, Wang Q, Wang H P. Acta Metallurgica Sinica, 2017(8),124 (in Chinese).
朱姜蕾, 王庆, 王海鹏. 金属学报, 2017(8),124.
14 Xu S S, Chang J, Wu Y H, et al. Acta Physica Sinica, 2019, 68(19), 224 (in Chinese).
徐山森, 常健, 吴宇昊, 等. 物理学报, 2019, 68(19), 224.
15 Ge L L, Liu R P, Wang Q, et al. Acta Metallurgica Sinica, 2004, 40(7), 682 (in Chinese).
葛丽丽, 刘日平, 王强, 等. 金属学报, 2004, 40(7), 682.
16 Wei S L, Huang L J, Chang J, et al. Acta Physica Sinica, 2016, 65(9), 216 (in Chinese).
魏绍楼, 黄陆军, 常健, 等. 物理学报, 2016, 65(9), 216.
17 Zhang L B, Dai F P, Xiong Y Y, et al. Acta Physica Sinica, 2006, 55(1), 419 (in Chinese).
张蜡宝, 代富平, 熊予莹, 等. 物理学报, 2006, 55(1), 419.
18 Zang D Y, Wang H P, Wei B B. Acta Physica Sinica, 2007, 56(8), 4804 (in Chinese).
臧渡洋, 王海鹏, 魏炳波. 物理学报, 2007, 56(8), 4804.
19 Li M, Xue X Y, Hu R, et al. Journal of Aeronautical Materials, 2012, 32(2), 1 (in Chinese).
李曼, 薛祥义, 胡锐, 等. 航空材料学报, 2012, 32(2), 1.
20 He T, Hu R, Wang J, et al. Materials Science and Engineering of Powder Metallurgy, 2014, 19(3), 355 (in Chinese).
何坛, 胡锐, 王军, 等. 粉末冶金材料科学与工程, 2014, 19(3), 355.
21 Sha S, Wang W L, Wu Y H, et al. Acta Physica Sinica, 2018, 67(4), 199 (in Chinese).
沙莎, 王伟丽, 吴宇昊, 等. 物理学报, 2018, 67(4), 199.
22 Wu Y H, Chang J, Wang W L, et al. Acta Materialia, 2017, 129, 366.
23 Dang B, Jian Z Y, Xu J F. International Journal of Materials Research, 2018, 109(8), 729.
24 Hyers R W, Zhao J, Bracker G P, et al. Light Metals 2019, 2019,DOI: 10.1007/978-3-030-05864-7_198.
25 Bracker G P, Schneider S, Wunderlich R, et al. JOM, 2020, DOI: 10.1007/s11837-020-04257-7.
26 Zhang Y K, Gao J, Kolbe M, et al. Acta Materialia, 2013, 61(13),4861.
27 Zhou Z M , Gao J , Li F , et al. Journal of Materials Science, 2011, 46(21),7039.
28 Liu T , Wang Q , Wang C , et al. Metallurgical and Materials Transactions A, 2010.
29 Ma W Z, Ji C C, Li J G. Rare Metal Materials and Engineering, 2004, 33(2), 201 (in Chinese).
马伟增, 季诚昌, 李建国.稀有金属材料与工程, 2004, 33(2), 201.
30 Bai X J, Wang Y C, Cao C D. Chinese Physics B, 2018, 27(11), 116402.
31 Dang B, Jian Z Y, Xu J F, et al. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2017, 48a(2), 789.
32 Kuribayashi K, Ozawa S, Nagayama K, et al. Journal of Crystal Growth, 2017, 468, 73.
33 Hyers R W, Rogers J R. High Temperature Materials and Processes, 2008, 27(6), 461.
34 Racz L M, Egry I. Review of Scientific Instruments, 1995, 66(8), 4254.
35 Plevachuk Y, Brillo J, Yakymovych A. Metallurgical and Materials Tran-sactions A, 2018, 49a(12), 6544.
36 Schmitz J, Hallstedt B, Brillo J, et al. Journal of Materials Science, 2012, 47(8), 3706.
37 Watanabe M, Adachi M, Uchikoshi M, et al. Fluid Phase Equilibria, 2020,DOI: 10.1016/j.fluid.2020.112596.
38 Su Y, Mohr M, Wunderlich R K, et al. Journal of Molecular Liquids, 2020, DOI: 10.1016/j.molliq.2019.111992.
39 Wunderlich R K, Mohr M. High Temperatures-High Pressures, 2019, 48(3), 253.
40 Mohr M, Wunderlich R K, Zweiacker K, et al. npj Microgravity, 2019, DOI:10.1038/s41526-019-0065-4.
41 Wang H P, Wei B B. Chinese Science Bulletin, 2005, 50(8), 827 (in Chinese).
王海鹏, 魏炳波.科学通报, 2005, 50(8), 827.
42 Chen L, Wang H P, Wei B B. Acta Physica Sinica, 2009, 58(1), 384 (in Chinese).
陈乐, 王海鹏, 魏炳波.物理学报, 2009, 58(1), 384.
43 Mohr M, Wunderlich R, Dong Y, et al. Advanced Engineering Materials, 2020, 22(4), 1901228.
44 Watanabe M, Takano J, Adachi M, et al. Journal of Chemical Thermodynamics, 2018, 121, 145.
45 Ma W Z, Ji C C, Li J G, et al. Rare Metal Materials and Engineering, 2003, 32(10), 866 (in Chinese).
马伟增, 季诚昌, 李建国, 等. 稀有金属材料与工程, 2003, 32(10), 866.
46 Bojarevics V, Pericleous K. ISIJ International, 2003, 43(6), 890.
47 Kobatake H, Fukuyama H, Minato I, et al. Applied Physics Letters, 2007, 90(9), 094102.
48 Tsukada T, Sugioka K I, Tsutsumino T, et al. International Journal of Heat and Mass Transfer, 2009, 52(21), 5152.
49 Mohr M, Wunderlich R, Novakovic R, et al. Advanced Engineering Materials, DOI: 10.1002/adem.202000169.
50 Leitner M, Leitner T, Schmon A, et al. Metallurgical and Materials Transactions A, 2017, 48(6), 3036.
51 Rayleigh L. Proceeding of the Royal Society of London Series I, 1879, 29, 71.
52 Zhou K, Wei B. Applied Physics A, 2016, 122(3), 248.
53 Mohr M, Wunderlich R K, Koch S, et al. Microgravity Science and Technology, 2019, 31(2), 177.
54 Wunderlich R K, Fecht H J, Lohofer G. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 2017, 48(1), 237.
55 Wessing J J, Brillo J. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2017, 48a(2), 868.
56 Feng L, Shi W Y. International Journal of Heat and Mass Transfer, 2018, 122, 69.
57 Asakuma Y, Sakai Y, Hahn S H, et al. Metallurgical & Materials Tran-sactions B, 2000, 31(2), 327.
58 Spitans S, Baake E, Nacke B, et al. Metallurgical and Materials Transactions B, 2016, 47(1), 522.
59 Yan P, Zhang G, Yang Y, et al. Metallurgical and Materials Transactions B, 2020, 51(1), 247.
60 Ruan Y, Hu L, Yan L, et al. Science Sinica Technologica, 2020, 50(6), 1 (in Chinese).
阮莹, 胡亮, 闫娜, 等.中国科学: 技术科学, 2020, 50(6), 1.
61 Xiao X, Hyers R W, Matson D M. International Journal of Heat and Mass Transfer, 2019, 136, 531.
62 Xiao X, Lee J, Hyers R W, et al. npj Microgravity, 2019, DOI: 10.1038/s41526-019-0067-2.
63 Baker E B, Nawer J, Xiao X, et al. npj Microgravity, 2020,DOI: 10.1038/s41526-020-0099-7.
[1] 王兆, 张新虎, 王召浩, 王冠, 惠永博, 郑伟, 丁阳, 朱丽兵, 邓勇军, 傅先刚, 恽迪, 柳文波. 基于MOOSE平台的UO2燃料性能分析[J]. 材料导报, 2022, 36(7): 21040019-7.
[2] 徐洲, 李晓延, 王小鹏, 王海东. 组合热源模型在焊接模拟中的应用现状与展望[J]. 材料导报, 2022, 36(6): 20070081-6.
[3] 刘玉宝, 王举金, 杨文, 刘风琴, 李亚琼, 崔凌霄, 张洋. LaFe合金在底吹氩钢包内熔化混匀的数值模拟研究[J]. 材料导报, 2022, 36(21): 21050172-7.
[4] 崔朝兴, 董世运, 胡效东, 闫世兴, 姜浩涌. 激光熔化沉积成形过程数值模拟研究现状[J]. 材料导报, 2022, 36(2): 20040221-6.
[5] 赵鸿飞, 郭丽丽, 赵颖, 苑菁茹, 运新兵. AZ31镁合金板材单双杆连续挤压变形过程及组织性能的对比[J]. 材料导报, 2022, 36(18): 21040305-7.
[6] 易宗鑫, 李小强, 潘存良, 沈正章. TC4钛合金筒形收口件超塑胀形数值模拟及试验研究[J]. 材料导报, 2022, 36(18): 21040245-8.
[7] 杨瑞, 刘绍宏, 朱海澄, 孙旭东, 刘满门, 崔浩, 陈家林. 电接触材料电弧侵蚀研究进展[J]. 材料导报, 2022, 36(17): 20070113-7.
[8] 张昌青, 师文辰, 罗德春, 王树文, 刘晓, 崔国胜, 陈波阳, 张忠科, 辛舟, 芮执元. 锥形端面对铝/钢连续驱动摩擦焊温度场的数值模拟研究[J]. 材料导报, 2022, 36(15): 21040043-7.
[9] 张芳芳, 周蕊, 孙毅刚, 刘兵飞, 杜春志, 洪彬. 基于细观相变和黏弹性本构模型的SMP热力循环数值模拟对比分析[J]. 材料导报, 2022, 36(15): 21030129-7.
[10] 潘诗婷, 李凯, 张超慧, 史才军. 粗骨料形状对混凝土氯离子扩散性能影响的数值模拟研究[J]. 材料导报, 2022, 36(10): 21030145-9.
[11] 范凌云, 高婧, 李锦峰, 周海俊. 层压型CFRP环带疲劳试验中接触面温度场分析[J]. 材料导报, 2022, 36(1): 20110148-7.
[12] 唐宏波, 解永强, 张红梅, 王宏杰, 胡北辰. 新型五温区碲化汞单晶炉热场结构数值模拟[J]. 材料导报, 2021, 35(z2): 121-126.
[13] 赵金猛, 卢林, 王静荣, 张亮, 吴文恒, 朱冬, 郭帅东, 肖从越. 激光选区熔化Ti6Al4V在介观尺度下的热力学行为与缺陷:数值模拟与实验验证[J]. 材料导报, 2021, 35(z2): 410-416.
[14] 孙鹏飞, 吕平, 黄微波, 张锐, 方志强, 桑英杰. 喷涂抗爆型聚脲钢筋混凝土板抗爆性能研究[J]. 材料导报, 2021, 35(z2): 642-648.
[15] 汪海波, 于海群, 童水光, 唐宁, 徐永亮. 引晶直径对扩肩形态影响的数值模拟及实验研究[J]. 材料导报, 2021, 35(Z1): 186-188.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed