Research Progress on Application and Numerical Simulation of Electromagnetic Levitation Melting Metal Alloy
LIU Yu1, ZHANG Guifang1,2,*, QI Xin1, SHI Zhe1,2, YAN Peng1, JIANG Qi1
1 Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China 2 Yunnan Provincial Key Laboratory of Complex Iron Resources for Clean Metallurgy, Kunming 650093, China
Abstract: The rapid development of industrial manufacturing has put forward higher requirements for the quality and performance of multi-element alloys. However, it's difficult to process high-purity, high-activity and high-melting alloys by conventional melting methods. Compared with traditional methods,electromagnetic levitation (EML), as a non-contact melting technology under microgravity conditions, can achieve substantial undercooling and rapid cooling for metal alloys solidifying, and can significantly change the crystal morphology, which can make the crystals develop to the alloy with excellent quality and performance. Therefore, EML technology for melting metal alloy has aroused great concern among researchers. Researchers have quantitatively measured the specific heat, density, viscosity, surface tension and other properties of multi-element alloys by EML technology. By observing the supercooled levitated molten droplets, combining the oscillating droplet method, the falling drop calorimetry method and the coupled electron method, the thermophysical properties over a wide temperature range can be measured. Studies have indicated that numerical modeling techniques are now used to simulate the flow phenomena and transport phenomena inside the molten droplet, which permits characterization of the flow as well as surface deformation of the droplet, and has facilitated revelation of the experimental results. According to a large number of studies of domestic and foreign researchers on the application and numerical simulation of electromagnetic levitation melting metal alloy, it can be found that: (i) refractory would inevitably pollute the liquid alloy in the alloy melting process; (ii) the undercooling and cooling rate have a great influence on the solidification process, but effective research methods are limited; (iii) the thermophysical properties affect greatly the macroscopic properties of the alloy, and can be used as input parameters for the simulation and optimization of the manufacturing process. However, there are few related publications. The paper summarizes research progress with respect to EML of molten alloys, including solidification phenomena and other property measurements as well as numerical simulation studies about flow phenomena and transport phenomena inside the molten droplet. Problems of EML melting technology and future breakthrough directions are discussed, which provides a reference for future research and numerical simulation of liquid alloy properties.
1 Yu Z. Research on ultrasonic standing wave acoustic field characteristics using LDV measurement method. Master's Thesis, Harbin Institute of Technology, China, 2017 (in Chinese). 于震. 基于LDV测量方法的超声驻波声场特性的研究. 硕士学位论文, 哈尔滨工业大学, 2017. 2 Egry I, Holland-Moritz D. European Physical Journal Special Topics, 2011, 196(1), 131. 3 Gao L, Shi Z, Yang Y D, et al. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 2018, 49(4), 1985. 4 Wang Q, He M, Zhu X W, et al. Acta Metallurgica Sinica, 2018, DOI:10.11900/0412.1961.2017.00360 (in Chinese). 王强, 何明, 朱晓伟, 等.金属学报, 2018, DOI:10.11900/0412.1961.2017.00360. 5 Lohöfer G. Review of Scientific Instruments, 2018, 89(12), 124709. 6 Zhu Y Y, Li Q, He Y H, et al. Materials Reports A:Review Papers, 2009, 23(7), 78 (in Chinese). 朱玉英, 李强, 何云华, 等. 材料导报:综述篇, 2009, 23(7), 78. 7 Yan J H, Jian Z Y, Zhu M, et al. Acta Metallurgica Sinica, 2016, 52(8), 931 (in Chinese). 严军辉 坚增运, 朱满, 等. 金属学报, 2016, 52(8), 931. 8 Chang F E, Jian Z Y, Kazuhiko K. Foundry Technology, 2005, 26(10), 73 (in Chinese). 常芳娥, 坚增运, Kazuhiko K.铸造技术, 2005(10), 73. 9 Dong Z Q, Tu G F. Journal of the Chinese Rare Earth Society, 2008, 26(5), 584 (in Chinese). 董中奇, 涂赣峰. 中国稀土学报, 2008, 26(5), 584. 10 Xiao Y, Xu J F, Jian Z Y. Journal of Xi'an Technological University, 2020, 40(1), 70 (in Chinese). 肖颖,许军锋,坚增运. 西安工业大学学报, 2020, 40(1), 70. 11 Zhao L G, Si N C. Materials Reports, 2008, 22(S3), 374 (in Chinese). 赵罗根, 司乃潮. 材料导报, 2008, 22(S3), 374. 12 Zhu.Q F, Zhao Z H, Wang J, et al. Materials Review, 2007, 21(5),109 (in Chinese). 朱庆丰, 赵志浩, 王静, 等. 材料导报, 2007, 21(5),109. 13 Zhu J L, Wang Q, Wang H P. Acta Metallurgica Sinica, 2017(8),124 (in Chinese). 朱姜蕾, 王庆, 王海鹏. 金属学报, 2017(8),124. 14 Xu S S, Chang J, Wu Y H, et al. Acta Physica Sinica, 2019, 68(19), 224 (in Chinese). 徐山森, 常健, 吴宇昊, 等. 物理学报, 2019, 68(19), 224. 15 Ge L L, Liu R P, Wang Q, et al. Acta Metallurgica Sinica, 2004, 40(7), 682 (in Chinese). 葛丽丽, 刘日平, 王强, 等. 金属学报, 2004, 40(7), 682. 16 Wei S L, Huang L J, Chang J, et al. Acta Physica Sinica, 2016, 65(9), 216 (in Chinese). 魏绍楼, 黄陆军, 常健, 等. 物理学报, 2016, 65(9), 216. 17 Zhang L B, Dai F P, Xiong Y Y, et al. Acta Physica Sinica, 2006, 55(1), 419 (in Chinese). 张蜡宝, 代富平, 熊予莹, 等. 物理学报, 2006, 55(1), 419. 18 Zang D Y, Wang H P, Wei B B. Acta Physica Sinica, 2007, 56(8), 4804 (in Chinese). 臧渡洋, 王海鹏, 魏炳波. 物理学报, 2007, 56(8), 4804. 19 Li M, Xue X Y, Hu R, et al. Journal of Aeronautical Materials, 2012, 32(2), 1 (in Chinese). 李曼, 薛祥义, 胡锐, 等. 航空材料学报, 2012, 32(2), 1. 20 He T, Hu R, Wang J, et al. Materials Science and Engineering of Powder Metallurgy, 2014, 19(3), 355 (in Chinese). 何坛, 胡锐, 王军, 等. 粉末冶金材料科学与工程, 2014, 19(3), 355. 21 Sha S, Wang W L, Wu Y H, et al. Acta Physica Sinica, 2018, 67(4), 199 (in Chinese). 沙莎, 王伟丽, 吴宇昊, 等. 物理学报, 2018, 67(4), 199. 22 Wu Y H, Chang J, Wang W L, et al. Acta Materialia, 2017, 129, 366. 23 Dang B, Jian Z Y, Xu J F. International Journal of Materials Research, 2018, 109(8), 729. 24 Hyers R W, Zhao J, Bracker G P, et al. Light Metals 2019, 2019,DOI: 10.1007/978-3-030-05864-7_198. 25 Bracker G P, Schneider S, Wunderlich R, et al. JOM, 2020, DOI: 10.1007/s11837-020-04257-7. 26 Zhang Y K, Gao J, Kolbe M, et al. Acta Materialia, 2013, 61(13),4861. 27 Zhou Z M , Gao J , Li F , et al. Journal of Materials Science, 2011, 46(21),7039. 28 Liu T , Wang Q , Wang C , et al. Metallurgical and Materials Transactions A, 2010. 29 Ma W Z, Ji C C, Li J G. Rare Metal Materials and Engineering, 2004, 33(2), 201 (in Chinese). 马伟增, 季诚昌, 李建国.稀有金属材料与工程, 2004, 33(2), 201. 30 Bai X J, Wang Y C, Cao C D. Chinese Physics B, 2018, 27(11), 116402. 31 Dang B, Jian Z Y, Xu J F, et al. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2017, 48a(2), 789. 32 Kuribayashi K, Ozawa S, Nagayama K, et al. Journal of Crystal Growth, 2017, 468, 73. 33 Hyers R W, Rogers J R. High Temperature Materials and Processes, 2008, 27(6), 461. 34 Racz L M, Egry I. Review of Scientific Instruments, 1995, 66(8), 4254. 35 Plevachuk Y, Brillo J, Yakymovych A. Metallurgical and Materials Tran-sactions A, 2018, 49a(12), 6544. 36 Schmitz J, Hallstedt B, Brillo J, et al. Journal of Materials Science, 2012, 47(8), 3706. 37 Watanabe M, Adachi M, Uchikoshi M, et al. Fluid Phase Equilibria, 2020,DOI: 10.1016/j.fluid.2020.112596. 38 Su Y, Mohr M, Wunderlich R K, et al. Journal of Molecular Liquids, 2020, DOI: 10.1016/j.molliq.2019.111992. 39 Wunderlich R K, Mohr M. High Temperatures-High Pressures, 2019, 48(3), 253. 40 Mohr M, Wunderlich R K, Zweiacker K, et al. npj Microgravity, 2019, DOI:10.1038/s41526-019-0065-4. 41 Wang H P, Wei B B. Chinese Science Bulletin, 2005, 50(8), 827 (in Chinese). 王海鹏, 魏炳波.科学通报, 2005, 50(8), 827. 42 Chen L, Wang H P, Wei B B. Acta Physica Sinica, 2009, 58(1), 384 (in Chinese). 陈乐, 王海鹏, 魏炳波.物理学报, 2009, 58(1), 384. 43 Mohr M, Wunderlich R, Dong Y, et al. Advanced Engineering Materials, 2020, 22(4), 1901228. 44 Watanabe M, Takano J, Adachi M, et al. Journal of Chemical Thermodynamics, 2018, 121, 145. 45 Ma W Z, Ji C C, Li J G, et al. Rare Metal Materials and Engineering, 2003, 32(10), 866 (in Chinese). 马伟增, 季诚昌, 李建国, 等. 稀有金属材料与工程, 2003, 32(10), 866. 46 Bojarevics V, Pericleous K. ISIJ International, 2003, 43(6), 890. 47 Kobatake H, Fukuyama H, Minato I, et al. Applied Physics Letters, 2007, 90(9), 094102. 48 Tsukada T, Sugioka K I, Tsutsumino T, et al. International Journal of Heat and Mass Transfer, 2009, 52(21), 5152. 49 Mohr M, Wunderlich R, Novakovic R, et al. Advanced Engineering Materials, DOI: 10.1002/adem.202000169. 50 Leitner M, Leitner T, Schmon A, et al. Metallurgical and Materials Transactions A, 2017, 48(6), 3036. 51 Rayleigh L. Proceeding of the Royal Society of London Series I, 1879, 29, 71. 52 Zhou K, Wei B. Applied Physics A, 2016, 122(3), 248. 53 Mohr M, Wunderlich R K, Koch S, et al. Microgravity Science and Technology, 2019, 31(2), 177. 54 Wunderlich R K, Fecht H J, Lohofer G. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 2017, 48(1), 237. 55 Wessing J J, Brillo J. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2017, 48a(2), 868. 56 Feng L, Shi W Y. International Journal of Heat and Mass Transfer, 2018, 122, 69. 57 Asakuma Y, Sakai Y, Hahn S H, et al. Metallurgical & Materials Tran-sactions B, 2000, 31(2), 327. 58 Spitans S, Baake E, Nacke B, et al. Metallurgical and Materials Transactions B, 2016, 47(1), 522. 59 Yan P, Zhang G, Yang Y, et al. Metallurgical and Materials Transactions B, 2020, 51(1), 247. 60 Ruan Y, Hu L, Yan L, et al. Science Sinica Technologica, 2020, 50(6), 1 (in Chinese). 阮莹, 胡亮, 闫娜, 等.中国科学: 技术科学, 2020, 50(6), 1. 61 Xiao X, Hyers R W, Matson D M. International Journal of Heat and Mass Transfer, 2019, 136, 531. 62 Xiao X, Lee J, Hyers R W, et al. npj Microgravity, 2019, DOI: 10.1038/s41526-019-0067-2. 63 Baker E B, Nawer J, Xiao X, et al. npj Microgravity, 2020,DOI: 10.1038/s41526-020-0099-7.