Please wait a minute...
材料导报  2022, Vol. 36 Issue (18): 21040245-8    https://doi.org/10.11896/cldb.21040245
  金属与金属基复合材料 |
TC4钛合金筒形收口件超塑胀形数值模拟及试验研究
易宗鑫1, 李小强1,*, 潘存良1, 沈正章2
1 华南理工大学国家金属材料近净成形工程技术研究中心,广州 510640
2 航天材料及工艺研究所,北京 100076
Numerical Simulation and Experimental Study on Superplastic Bulging of TC4 Alloy Necking Cup
YI Zongxin1, LI Xiaoqiang1,*, PAN Cunliang1, SHEN Zhengzhang2
1 National Engineering Research Center for Near-Net-Shape for Metallic Materials, South China University of Technology, Guangzhou 510640, China
2 Aerospace Research Institute of Materials & Processing Technology, Beijing 100076, China
下载:  全 文 ( PDF ) ( 7386KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对TC4钛合金进行超塑拉伸试验,研究了变形温度为800~950 ℃、应变速率为0.000 2~0.005 s-1下的超塑变形特性并建立相应的Backofen本构方程。研究表明:最佳超塑温度变形为850 ℃,应变速率为0.000 5 s-1,在该参数下,TC4钛合金的延伸率为788%,应变速率敏感系数m为0.60。将Backofen方程导入ABAQUS软件并在最佳超塑参数下进行超塑胀形数值模拟。超塑胀形后筒形收口件的应力、应变和厚度均呈对称分布,顶部区域最先贴模,中部收口段和顶部的过渡区域最后贴模,应力、应变最大值和厚度最小值均出现在过渡区域;优化后的保压胀形的最大压强为1.90 MPa。超塑胀形试验结果与数值模拟结果基本一致,厚度相对误差为6.98%。超塑胀形后不同部位的微观组织观察结果表明:超塑胀形后晶粒明显长大,其中顶部粗化程度最大,为17.9 μm,中部收口段粗化程度最小为14.7 μm。由于不同部位变形方向不同,晶粒的取向发生改变,端口部和顶部的晶粒在[0001]方向具有取向,中部晶粒在[21 10]方向具有明显取向。变形量较小的端口处α晶粒内部发生大量的位错增殖,在应变诱导下,变形量较大的中部α晶内产生针状马氏体,变形量最大的顶部有板条状马氏体生成。与原始管坯相比,在薄弱区的顶部直筒段,抗拉强度得到提高,屈服强度和延伸率略有下降。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
易宗鑫
李小强
潘存良
沈正章
关键词:  TC4钛合金  超塑胀形  数值模拟  微观组织    
Abstract: Through superplastic tensile test, the superplastic deformation characteristics at the deformation temperature of 800—950 ℃ and strain rate of 0.000 2~0.005 s-1 were studied and the corresponding Backofen constitutive equation was established. The optimum superplastic bulging temperature of TC4 alloy is 850 ℃, and the strain rate is 0.000 5 s-1. Under this parameter, the elongation of TC4 alloy is 788%, and the strain rate sensitivity coefficient m is 0.60. The superplastic rheological constitutive model of TC4 alloy Backofen established by true stress-strain curve was applied to the superplastic bulging numerical model established by ABAQUS numerical simulation software.The results show that stress, strain and thickness are symmetrically distributed during superplastic bulging. Due to the difference of die sticking sequence, the top area of the tube piece is stuck first, while the middle necking section and the transition area at the top are stuck last, and the maximum value of stress and strain and minimum value of thickness all appear in the transition area. The maximum pressure of pressure-keeping bulging is 1.90 MPa. The experimental results are basically consistent with the numerical simulation results, and the relative error is 6.98%. The microstructure after superplastic bulging is observed. The results show that the grain size of TC4 titanium alloy tube necking part grows obviously after superplastic bulging. The grain size is 17.9 μm at the top and 14.7 μm at the middle. Due to the different deformation directions in different parts, the orientation of grains changes. The grains at the port and top have orientation in the [0001] direction, while the grains in the middle have obvious orientation in the [21 10] direction. A large number of dislocations proliferate in the α grain at the port with small deformation. Under strain induction, needle martensite is produced in the α grain at the middle necking section with the largest deformation, and lath martensite is produced at the top with the largest deformation. Mechanical tests show that the tensile strength of the straight tube section at the top of the weak zone is improved, while the yield strength and elongation are slightly decreased, compared with the original tube blank.
Key words:  TC4 titanium alloy    superplastic bulging    numerical simulation    microstructure
收稿日期:  2022-09-25      出版日期:  2022-09-25      发布日期:  2022-09-26
ZTFLH:  TG306  
基金资助: 国防基础科研计划项目(JCKY2018203C031)
通讯作者:  *lixq@scut.edu.cn   
作者简介:  易宗鑫,2014年至2018年于南昌航空大学航天制造工程学院攻读学士学位,2018年至2021年于华南理工大学机械与汽车工程学院攻读硕士学位。主要从事材料成型数值仿真的研究。参与国防基础科研项目1项。李小强,华南理工大学教授、博士研究生导师。1992年至1996年于重庆大学机械工程学院攻读学士学位,1996年至1998年于哈尔滨工业大学材料科学与工程学院攻读硕士学位,1998年至2002年于哈尔滨工业大学材料科学与工程学院攻读博士学位,2002年5月至2004年5月于华南理工大学材料加工工程专业从事博士后研究工作,主要从事材料加工方面的研究。获教育部提名国家科技进步二等奖1项。在学术期刊上累计发表论文153篇。
引用本文:    
易宗鑫, 李小强, 潘存良, 沈正章. TC4钛合金筒形收口件超塑胀形数值模拟及试验研究[J]. 材料导报, 2022, 36(18): 21040245-8.
YI Zongxin, LI Xiaoqiang, PAN Cunliang, SHEN Zhengzhang. Numerical Simulation and Experimental Study on Superplastic Bulging of TC4 Alloy Necking Cup. Materials Reports, 2022, 36(18): 21040245-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040245  或          http://www.mater-rep.com/CN/Y2022/V36/I18/21040245
1 Cai J M, Wang Y, Zeng F C. Forging & Metalforming, 2020(15), 20(in Chinese).
蔡建明, 王洋, 曾凡昌. 锻造与冲压, 2020(15), 20.
2 Chen Z L, Yang X. Auto Manufacturing Engineer, 2017(9), 46(in Chinese).
陈政龙, 杨晓. 汽车工艺师, 2017(9), 46.
3 Yuan G S, Yan L P, Han Y Y. Hot Working Technology, 2017, 46(4), 13(in Chinese).
原国森, 兖利鹏, 韩艳艳. 热加工工艺, 2017, 46(4), 13.
4 Lin Z R. Principle and application of metal superplastic forming, Aviation Industry Press, China,1990(in Chinese).
林兆荣. 金属超塑性成形原理及应用,航空工业出版社, 1990.
5 Chandrappa K, Sumukha C S, Sankarsh B B, et al. Materials Today: Proceedings, 2020, 27, 2909.
6 Zhang T Y, Liu Y, Liu B. Materials Science and Engineering of Powder Metallurgy, 2014, 19(2), 184(in Chinese).
张拓阳, 刘咏, 刘彬. 粉末冶金材料科学与工程,2014,19(2),184.
7 Xu F, Yan Y B. The Titanium Industry Progress, 2012, 29(2), 15(in Chinese).
徐烽, 颜银标. 钛工业进展, 2012, 29(2), 15.
8 Xu Y, Yang X J, Du D N, et al. Special Casting & Nonferrous Alloys, 2017, 37(7), 697(in Chinese).
徐勇, 杨湘杰, 杜丹妮,等.特种铸造及有色合金,2017,37(7),697.
9 Wang B, Zeng W D, Peng W W. Titanium Industry Progress, 2014, 31(5), 14(in Chinese).
汪波, 曾卫东, 彭雯雯. 钛工业进展, 2014, 31(5), 14.
10 Mosleh A O, Mikhaylovskaya A V, Kotov A D, et al. Journal of Manufacturing Processes, 2019, 45, 262.
11 Chandrappa K, Sumukha C S, Sankarsh B B, et al. Materials Today: Proceedings, 2020, 27, 2909.
12 Chen J W. Study on superplastic forming and precision control of TC4 alloy deep cups. Master's Thesis,Harbin Institute of Technology, China,2007(in Chinese).
陈建维.TC4合金深筒形件的超塑成形及其精度控制.硕士学位论文,哈尔滨工业大学, 2007.
13 Tao Z J, Yang H, Li H, et al. Rare Metals, 2016, 35(2), 162.
14 Zhao X K. Constitutive modeling of compression behavior of TC4 tube based on modified arrhenius and artificial neural network models.Ph.D. Thesis,Harbin Institute of Technology,China, 2017(in Chinese).
赵小凯.TA15钛合金薄壁构件热强旋成形及性能强化机理研究.博士学位论文,哈尔滨工业大学, 2017.
15 Chen Y, Kibble K, Hall R, et al. Materials & Design,2001,22(8),679.
16 Mosleh A O, Mikhaylovskaya A V, Kotov A D, et al. Journal of Manufacturing Processes, 2019,45, 262.
17 Yang J Z, Wu J J, Zhang Q W,et al. Materials Science and Engineering: A, 2020,797,140046
18 Zhang T Y, Liu Y, Daniel G, et al. Materials Science and Engineering: A,2014,608, 265.
19 Guo M L, Liu J, Tan M J, et al. Procedia Engineering,2014,81,1090.
20 Song Y Q. Journal of Mechanical Engineering,2003(10),64(in Chinese).
宋玉泉. 机械工程学报, 2003(10), 64.
21 Backofen W A. Trans ASM, 1964, 57,980.
[1] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[2] 郭瑞琪, 王秀琦, 刘国怀, 李天瑞, 王昭东. Ti-44Al-5Nb-1Mo-(V,B)合金热变形过程中的相变、再结晶行为及组织调控[J]. 材料导报, 2022, 36(Z1): 22010111-6.
[3] 史天宇, 孔维雄, 陈雨琳, 宁保群, 董治中. 新型高氮马氏体耐热铸钢的热处理及相变解析[J]. 材料导报, 2022, 36(Z1): 20120084-6.
[4] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[5] 王兆, 张新虎, 王召浩, 王冠, 惠永博, 郑伟, 丁阳, 朱丽兵, 邓勇军, 傅先刚, 恽迪, 柳文波. 基于MOOSE平台的UO2燃料性能分析[J]. 材料导报, 2022, 36(7): 21040019-7.
[6] 肖棚, 高杰维, 刘里根, 韩靖. 激光熔覆修复EA4T车轴钢显微组织和强度评价[J]. 材料导报, 2022, 36(7): 21070180-7.
[7] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[8] 徐洲, 李晓延, 王小鹏, 王海东. 组合热源模型在焊接模拟中的应用现状与展望[J]. 材料导报, 2022, 36(6): 20070081-6.
[9] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[10] 崔朝兴, 董世运, 胡效东, 闫世兴, 姜浩涌. 激光熔化沉积成形过程数值模拟研究现状[J]. 材料导报, 2022, 36(2): 20040221-6.
[11] 徐楷昕, 雷振, 黄瑞生, 尹立孟, 方乃文, 邹吉鹏, 曹浩. 40 mm厚TC4钛合金窄间隙激光填丝焊接头组织及性能[J]. 材料导报, 2022, 36(2): 20120180-6.
[12] 赵鸿飞, 郭丽丽, 赵颖, 苑菁茹, 运新兵. AZ31镁合金板材单双杆连续挤压变形过程及组织性能的对比[J]. 材料导报, 2022, 36(18): 21040305-7.
[13] 于晓全, 樊丁, 黄健康. 焊丝成分对铝/钢电弧辅助激光熔钎焊接头组织及力学性能的影响[J]. 材料导报, 2022, 36(18): 21050207-5.
[14] 杨瑞, 刘绍宏, 朱海澄, 孙旭东, 刘满门, 崔浩, 陈家林. 电接触材料电弧侵蚀研究进展[J]. 材料导报, 2022, 36(17): 20070113-7.
[15] 肖寒, 陈昊, 熊迟, 陈磊, 张雄超, 周瑀杭, 崔鋆昕. 重熔温度对半固态挤压铜合金轴套组织性能的影响[J]. 材料导报, 2022, 36(17): 21050057-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed