Please wait a minute...
材料导报  2022, Vol. 36 Issue (17): 21050057-5    https://doi.org/10.11896/cldb.21050057
  金属与金属基复合材料 |
重熔温度对半固态挤压铜合金轴套组织性能的影响
肖寒*, 陈昊, 熊迟, 陈磊, 张雄超, 周瑀杭, 崔鋆昕
昆明理工大学材料科学与工程学院,昆明 650093
Effect of Remelting Temperature on Microstructure and Properties of Semi-solid Extruded Copper Alloy Bushing
XIAO Han*, CHEN Hao, XIONG Chi, CHEN Lei, ZHANG Xiongchao, ZHOU Yuhang, CUI Yunxin
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 8700KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对铜合金进行热处理可显著改善其性能,但铜合金半固态浆料制备过程对其微观组织和力学性能的影响也不容忽略。本工作将轧制铜合金在890 ℃、910 ℃、930 ℃、950 ℃四个重熔温度下保温15 min,然后挤压成形。研究不同重熔温度对半固态挤压铜合金的微观组织、元素分布、拉伸性能、断口分析、布氏硬度的影响。结果表明:随着重熔温度的升高,半固态挤压铜合金的平均晶粒直径先逐渐增大随后减小;液相率一直增加,由12.7%增加到了19.2%;形状因子先减小后增加;抗拉强度逐渐减小;延伸率逐渐增加;断裂方式逐渐由脆性断裂变为解理断裂和韧性断裂的混合型断裂方式,断口由平整光滑逐渐转变为河流花样、解理平台和少量韧窝交错;布氏硬度先增加随后逐渐降低,当重熔温度为910 ℃时,布氏硬度达到最大值126HBW。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖寒
陈昊
熊迟
陈磊
张雄超
周瑀杭
崔鋆昕
关键词:  铜合金  半固态  重熔温度  微观组织  力学性能    
Abstract: The heat treatment of the copper alloy has a significant effect on the improvement and promotion of its performance, and the influence of the preparation process of the semi-solid copper alloy slurry on the microstructure and mechanical properties cannot be ignored.This work studies the microstructure, element distribution, tensile performance, fracture analysis, brinell hardness of the semi-solid extruded copper alloy at four remelting temperatures of 890 ℃, 910 ℃, 930 ℃ and 950 ℃ for 15 min. The results show that with the increase of remelting temperature, the average grain diameter increases at first and then decreases, that the liquid phase ratio increases from 12.7% to 19.2%, that the shape factor decreases at first and then increases, that the tensile strength decreases and that the elongation increases gradually. Tensile fracture gradually changes from brittle fracture to mixed mode of cleavage fracture and ductile fracture. Fracture surface changes from flat and smooth to river pattern, cleavage platform and a small number of dimples. Brinell hardness increases at first and then decreases gradually. When remelting temperature is 910 ℃, Brinell hardness reaches the maximum value of 126HBW.
Key words:  copper alloy    semi-solid    remelting temperature    microstructure    mechanical property
出版日期:  2022-09-10      发布日期:  2022-09-10
ZTFLH:  TG146.1+1  
基金资助: 国家自然科学基金(51965028);云南省基础研究计划项目(202001AT070031)
通讯作者:  *kmxh@kust.edu.cn   
作者简介:  肖寒,昆明理工大学教授、博士研究生导师。2003年7月,获得中原工学院学士学位,2006年7月,获得大连理工大学硕士学位,2010年12月,获得大连理工大学博士学位,2010年至今任教于昆明理工大学。在国内外期刊上发表论文50余篇,授权发明专利15项。研究工作方向主要是先进塑性成形及数值模拟及有色金属半固态成形。主持国家自然科学基金、高等学校博士学科点专项科研基金等项目。
引用本文:    
肖寒, 陈昊, 熊迟, 陈磊, 张雄超, 周瑀杭, 崔鋆昕. 重熔温度对半固态挤压铜合金轴套组织性能的影响[J]. 材料导报, 2022, 36(17): 21050057-5.
XIAO Han, CHEN Hao, XIONG Chi, CHEN Lei, ZHANG Xiongchao, ZHOU Yuhang, CUI Yunxin. Effect of Remelting Temperature on Microstructure and Properties of Semi-solid Extruded Copper Alloy Bushing. Materials Reports, 2022, 36(17): 21050057-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050057  或          http://www.mater-rep.com/CN/Y2022/V36/I17/21050057
1 Spencer D B, Mehrabian R, Flemings M C. Metallurgical and Materials Transactions B, 1972, 3, 1925.
2 Flemings M C. Metallurgical Transactions B, 1991, 22, 957.
3 Binesh B, Aghaie-Khafri M. Metals, 2016, 6(3), 42.
4 Chen G, Zhang Y M, Du Z M. Transactions of Nonferrous Metals Society of China, 2016, 26(3), 643.
5 Huang S, Wang C, He K, et al. Philosophical Magazine Letters, 2019, 99(12), 444.
6 Meengam C, Dunyakul Y, Maunkhaw D, et al. Metals, 2018, 8(8), 637.
7 Sheykh-Jaberi F, Cockcroft S L, Maijer D M, et al. Journal of Materials Processing Technology, 2019, 266, 37.
8 Elgallad E M, Chen X G. Materials Science and Engineering A, 2012, 556, 783.
9 Campo K N, De Freitas C C, Moon S C, et al. Materials Characterization, 2018, 145, 10.
10 Chen Y N, Huo Y Z, Zhao Y P, et al. Rare Metal Materials and Engineering, 2016, 45(6), 1406 (in Chinese).
陈永楠, 霍亚洲, 赵祎平, 等. 稀有金属材料与工程, 2016, 45(6), 1406.
11 Chen Y N, Luo C, Wang J, et al. High Temperature Materials and Processes, 2016, 35(1), 29.
12 Chen Y N, Luo C, Huo Y Z, et al. Advances in Mechanical Engineering, DOI:10.1177/1687814015587428.
13 Guo H M, Wang C, Wen F M, et al. The Chinese Journal of Nonferrous Metals, 2016, 26(10), 2110 (in Chinese).
郭洪民, 王 程, 温飞马, 等. 中国有色金属学报, 2016, 26(10), 2110.
14 Wang Y, Hu M L, Xu Hong Y, et al. Modern Physics Letters B, 2020, 34(33), 2050385.
15 Lee B S, Joo D H, Kim M H. Materials Science and Engineering A, 2005, 402(1),170.
16 Neag A, Favier V, Bigot R, et al. Journal of Materials Processing Techno-logy, 2012, 212(7), 1472.
17 Li Y k, Li Lu, Geng B Y, et al. Materials Characterization, 2021, 172, 110898.
18 Cao M, Wang Z, Zhang Q. Journal of Alloys and Compounds, 2017, 715, 413.
19 Ferrante M, De Freitas E R. Acta Materialia, 2001, 49(18), 3839.
20 Ferrante M, De Freitas E R. Materials Science and Engineering A, 1999, 271(1), 172.
21 Lee B S, Joo D H, Kim M H. Journal of Materials Processing Technology, 2008, 198(1), 366.
[1] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[2] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[3] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[4] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[5] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[6] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[7] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[8] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[9] 郭瑞琪, 王秀琦, 刘国怀, 李天瑞, 王昭东. Ti-44Al-5Nb-1Mo-(V,B)合金热变形过程中的相变、再结晶行为及组织调控[J]. 材料导报, 2022, 36(Z1): 22010111-6.
[10] 史天宇, 孔维雄, 陈雨琳, 宁保群, 董治中. 新型高氮马氏体耐热铸钢的热处理及相变解析[J]. 材料导报, 2022, 36(Z1): 20120084-6.
[11] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[12] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[13] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[14] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[15] 肖棚, 高杰维, 刘里根, 韩靖. 激光熔覆修复EA4T车轴钢显微组织和强度评价[J]. 材料导报, 2022, 36(7): 21070180-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed