Please wait a minute...
材料导报  2022, Vol. 36 Issue (18): 21050207-5    https://doi.org/10.11896/cldb.21050207
  金属与金属基复合材料 |
焊丝成分对铝/钢电弧辅助激光熔钎焊接头组织及力学性能的影响
于晓全1,2, 樊丁1,2,*, 黄健康1,2
1 兰州理工大学材料科学与工程学院,兰州 730050
2 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
Effect of Filler Wire Composition on Microstructure and Mechanical Property of the Aluminum/Steel Arc Assisted Laser Welding-Brazing Joint
YU Xiaoquan1,2, FAN Ding1,2,*, HUANG Jiankang1,2
1 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 State Key Laboratory of Advance Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 4572KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用电弧辅助激光熔钎焊方法实现了铝合金与镀锌钢的对接焊,并在焊接过程中通过填充Al-Mg、Al-Cu及Al-Si焊丝对接头的焊缝及界面进行微观组织调控。采用扫描电子显微镜(Scanning electron microscope,SEM)、电子探针(Electron probe micro analyzer,EPMA) 对填充不同焊丝的焊缝及Al/Fe界面处的微观组织进行了观察与物相分析,对接头进行了拉伸力学性能测试,并讨论了界面金属间化合物形成及其对接头断裂性能的影响。结果表明:填充Al-Mg、Al-Cu焊丝的接头在界面处生成了Fe2Al5和Fe4Al13两种金属间化合物,而填充Al-Si焊丝时界面处生成了Al8Fe2Si和Fe4Al13。填充Al-Si焊丝的接头可获得最大抗拉强度176 MPa,接头断裂在拉伸应力-应变曲线的塑性变形阶段。界面金属间化合物厚度并非影响接头失效的决定性因素,而Fe2Al5自身裂纹和界面处不同相的晶格匹配决定了接头的力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于晓全
樊丁
黄健康
关键词:  铝合金/镀锌钢  电弧辅助激光熔钎焊  界面微观组织  力学性能    
Abstract: The aluminum alloy and the galvanized steel were joined by arc assisted laser welding-brazing method in a butt configuration. The microstructures of weld and interfacial were controlled by filling Al-Mg, Al-Cu and Al-Si filler wire during welding process. The scanning electron microscope and the electron probe micro analyzer were used to observe the microstructure and identify the phases, the tensile strength of weld joint was tested, and the formation of interfacial intermetallic compound (IMC) and its effects on weld joint fracture were discussed. The results show that two types IMC of Fe2Al5 and Fe4Al13 are formed at interface for filling Al-Mg and Al-Cu filler wires, while the Al8Fe2Si and Fe4Al13 are formed at interface when filled the Al-Si filler wire. The highest tensile strength of 176 MPa can be obtained when filled the Al-Si filler wire, and the fracture of the joint is in the plastic deformation stage of the tensile stress-strain curve. Interfacial IMC thickness is not the determining factor to inf-luence the failure of weld joint, while the crack in Fe2Al5 phase and the lattice matching of different phases at interface determine the mechanical property of weld joint.
Key words:  aluminium alloy/galvanized steel    arc assisted laser welding-brazing    interfacial microstructure    mechanical property
收稿日期:  2202-09-25      出版日期:  2022-09-25      发布日期:  2022-09-26
ZTFLH:  TG457  
基金资助: 国家自然科学基金(51465031)
通讯作者:  *fand@lut.cn   
作者简介:  于晓全,2014年6月于佳木斯大学获学士学位,2022年6月于兰州理工大学获博士学位。主要从事异种金属激光焊方面的研究。樊丁,教授,博士研究生导师。1982年6月于甘肃工业大学获学士学位,1984年6月于西安交通大学获硕士学位。主要从事焊接物理、焊接方法与智能控制及激光加工等方面的研究,发表论文300篇。
引用本文:    
于晓全, 樊丁, 黄健康. 焊丝成分对铝/钢电弧辅助激光熔钎焊接头组织及力学性能的影响[J]. 材料导报, 2022, 36(18): 21050207-5.
YU Xiaoquan, FAN Ding, HUANG Jiankang. Effect of Filler Wire Composition on Microstructure and Mechanical Property of the Aluminum/Steel Arc Assisted Laser Welding-Brazing Joint. Materials Reports, 2022, 36(18): 21050207-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050207  或          http://www.mater-rep.com/CN/Y2022/V36/I18/21050207
1 Shah L H, Ishak M. Materials and Manufacturing Processes,2014, 29(8),928.
2 Qin G L, Wu C S. Journal of Mechanical Engineering, 2016, 52(24),24(in Chinese).
秦国梁, 武传松. 机械工程学报, 2016, 52(24),24.
3 Chen S, Zhai Z, Huang J, et al. International Journal of Advanced Ma-nufacturing Technology, 2016, 82(1-4),631.
4 Winnicki M, Małachowska A, Korzeniowski M, et al. Surface Enginee-ring, 2018, 34(3), 235.
5 Zhou D W, Liu J S, Lu Y Z,et al. Journal of Mechanical Engineering, 2018, 54(14),58(in Chinese).
周惦武, 刘金水, 卢源志,等. 机械工程学报, 2018, 54(14),58.
6 Zhao X D,Xiao R S. Transactions of the China Welding Institution, 2013, 34(5),41(in Chinese).
赵旭东, 肖荣诗. 焊接学报, 2013, 34(5),41.
7 Bhupinder D, Brown T W, Kulkarni K N. Journal of Alloys and Compounds, 2018, 769,777.
8 Azimaee H, Sarfaraz M, Mirjalili M, et al. Surface and Coatings Technology, 2019, 357,483.
9 Song J L, Lin S B, Yang C L, et al. Journal of Alloys and Compounds, 2009, 488(1),217.
10 Song J L, Lin S B, Yang C L, et al. Science and Technology of Welding and Joining, 2010, 15(3), 213.
11 Shi Y, Li J, Huang J K, et al. Chinese Journal of Nonferrous Metals,2015,25(1),30(in Chinese).
石玗,李杰,黄健康,等. 中国有色金属学报, 2015,25(1),30.
12 Wu J, Xue S B,Fei W P, et al. Materials Reports A: Review Papers, 2019, 33(11),7(in Chinese).
吴杰, 薛松柏, 费文潘, 等. 材料导报:综述篇, 2019, 33(11),7.
13 Mei S W, Cheng Q L, Jiang Y, et al. The Chinese Journal of Nonferrous Metals, 2015, 25(2), 351(in Chinese).
梅述文, 成群林, 姜勇, 等. 中国有色金属学报,2015,25(2),351.
14 Basak S, Das H, Pal T K, et al. Materials Characterization, 2016, 112,229.
15 Sierra G, Peyre P, Deschaux-Beaume F, et al. Materials Science & Engineering A, 2007, 447(1-2),197.
16 Dharmendra C, Rao K P, Wilden J, et al. Materials Science and Engineering A, 2011, 528(3),1497.
17 Sierra G, Peyre P, Beaume F D, et al. Science & Technology of Welding & Joining, 2008, 13(5),430.
18 Lei Z, Qin G L, Lin S Y, et al. Journal of Mechanical Engineering, 2009, 45(3),94.
雷振, 秦国梁, 林尚扬,等. 机械工程学报, 2009, 45(3),94.
19 Westbrook J H, Fleischer R L. Intermetallic compounds: V.2 basic mechanical properties and lattice defects of intermetallic compounds, Wiley,America, 2000, pp.239.
20 Zhang X L,Zhou C Y. Acta Metallurgica Sinica (English Letters), 2011, 24(1), 75.
21 Yang J, Hu A, Feng B. Journal of Materials Processing Technology, 2019, 272,40.
[1] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[2] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[3] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[4] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[5] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[6] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[7] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[8] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[9] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[10] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[11] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[12] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[13] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[14] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[15] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed