Please wait a minute...
材料导报  2022, Vol. 36 Issue (4): 20120200-8    https://doi.org/10.11896/cldb.20120200
  无机非金属及其复合材料 |
隧道初支混凝土抗冲刷溶蚀技术评价及作用机理
周莹1,2, 穆松1,2,*, 蒲春平3, 周霄骋1,2, 李勇泉3, 蔡景顺1,2, 谢德擎1,2
1 江苏省建筑科学研究院有限公司,高性能土木工程材料国家重点实验室,南京 210008
2 江苏苏博特新材料股份有限公司,南京 211103
3 广东省路桥建设发展有限公司, 广东 中山 528463
Evaluation and Mechanism of Leaching Resistance Technology of Primary Support Concrete for Tunnel
ZHOU Ying1,2, MU Song1,2,*, PU Chunping3, ZHOU Xiaocheng1,2, LI Yongquan3, CAI Jingshun1,2, XIE Deqing1,2
1 State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Research Institute of Building Science, Nanjing 210008, China
2 Jiangsu Sobute New Materials Co., Ltd., Nanjing 211103, China
3 Guangdong Road & Bridge Construction Development Co., Ltd., Zhongshan 528463, Guangdong,China
下载:  全 文 ( PDF ) ( 4456KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 隧道初支混凝土被钙溶蚀破坏将导致孔隙率增加、强度下降,进而缩短其服役寿命。根据溶蚀计算模型,可以从减少可溶性钙含量、降低孔隙率和降低混凝土基体的水分传输速率等方面来提升混凝土的抗溶蚀性能。采用硬化气泡、X射线衍射、扫描电子显微镜、能谱分析、ICP等方法测试分析分别掺加矿物掺和料(AD)、密实材料(纳米二氧化硅,DM)和疏水材料(有机羧酸酯聚合物,HM)混凝土溶蚀前后的孔隙结构、水化产物、微观形貌和钙离子溶出量等指标。结果表明:矿物掺和料AD可以从降低可溶物Ca(OH)2的含量、细化混凝土孔隙等方面提升混凝土的抗溶蚀性能,溶蚀14 d时混凝土钙离子溶出量较纯水泥组降低10%,但混凝土早期强度偏低,不利于隧道初支混凝土施工;密实材料DM同样具有降低可溶物Ca(OH)2的含量、细化混凝土孔隙等优势,且其早期强度较高,溶蚀14 d时钙离子溶出量较纯水泥组降低22%;疏水材料HM可以从细化混凝土孔隙、降低水分传输速率等方面提升混凝土的抗溶蚀性能,溶蚀14 d时钙离子溶出量较纯水泥组降低30%,且对混凝土强度无不利影响。因此,混凝土的抗溶蚀提升效果顺序为:疏水材料HM>密实材料DM>矿物掺和料AD。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周莹
穆松
蒲春平
周霄骋
李勇泉
蔡景顺
谢德擎
关键词:  初支混凝土  溶蚀  水化产物  孔隙率  水分传输    
Abstract: Primary support concrete of tunnel is deteriorated by calcium leaching, which will increase porosity, decrease strength, and shorten its service life. According to a model of calcium leaching, reducing content of soluble calcium, porosity, and water transport rate of concrete was an effective method to improve its leaching resistance. Pore structure, hydration products, and microscopic morphology of primary support concrete incorporated with mineral admixtures(AD), densifying material (nano silica, DM) and hydrophobic material (organic carboxylate polymer, HM) before and after leaching test, were measured and analyzed by using hardened bubbles, X-ray diffraction, scanning electron microscopy, energy spectrum analysis, ICP and other methods. The results showed that mineral admixtures AD reduced the content of soluble Ca(OH)2 and refined the pores of concrete to improve the leaching resistance of primary support concrete. The leaching of calcium ions in primary support concrete is 10% lower than that of pure cement after 14 days of leaching. However, due to its secondary hydration effect, the early strength of concrete decreased, which was unfavorable to the tunnel's primary concrete. The densifying material DM reduced content of Ca(OH)2 and refined pore structure of the primary support concrete, which improved the corrosion resistance of concrete and its early strength. Therefore, the amount of calcium ion leaching for the concrete added with DM at 14 days is 22% lower than that for the pure cement concrete. Hydrophobic material HM improved the anti-leaching performance of concrete from the aspects of refining concrete pores and reducing water transmission rate. The amount of calcium ion leaching for the concrete added with HM at 14 days is 30% lower than that for pure cement concrete, and it has no adverse effect on the strength of concrete. On the whole, the leaching resistance technology was listed in a descending order: hydrophobic material HM> densifying material DM> mineral admixture AD.
Key words:  primary support concrete    leaching    hydration products    porosity    water transport
出版日期:  2022-02-25      发布日期:  2022-02-28
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52078240);广东省交通集团科技项目“湿热环境中隧道工程衬砌混凝土耐腐蚀关键技术研究”
通讯作者:  musong@cnjsjk.cn   
作者简介:  周莹,2017年硕士毕业于重庆大学材料科学与工程专业,工程师。主要研究方向为严酷环境下混凝土结构耐久性评价与提升。
穆松,博士,高级工程师,从事严酷环境下结构混凝土耐久性设计与提升技术研究。
引用本文:    
周莹, 穆松, 蒲春平, 周霄骋, 李勇泉, 蔡景顺, 谢德擎. 隧道初支混凝土抗冲刷溶蚀技术评价及作用机理[J]. 材料导报, 2022, 36(4): 20120200-8.
ZHOU Ying, MU Song, PU Chunping, ZHOU Xiaocheng, LI Yongquan, CAI Jingshun, XIE Deqing. Evaluation and Mechanism of Leaching Resistance Technology of Primary Support Concrete for Tunnel. Materials Reports, 2022, 36(4): 20120200-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120200  或          http://www.mater-rep.com/CN/Y2022/V36/I4/20120200
1 Zhang S L, Feng Q Z, Ying G G, et al. Journal of Highway and Transportation Research and Development, 2013, 30(10),86(in Chinese).
张素磊, 丰权章, 应国刚, 等. 公路交通科技, 2013, 30(10),86.
2 Carde C, Francois R. Cement & Concrete Research, 1997,27(7),971.
3 Hu H H, Zuo X B, Cui D, et al. Construction and Building Materials, 2019, 224,762.
4 Li C, Wu M X, Chen Q, et al. Cement & Concrete Composites, 2018.
5 Li Z S. Railway Construction Technology, 2012(7),90(in Chinese).
李正士. 铁道建筑技术, 2012(7),90.
6 Xiang L H. Analysis and prevention of tunnel drainage pipe blockage effect in water rich region. Master's Thesis, Chongqing Jiaotong University, China,2018(in Chinese).
向立辉. 富水隧道排水盲管堵塞效应分析及防治. 硕士学位论文,重庆交通大学,2018.
7 Larrard T D, Benboudjema F, Colliat J B, et al. Computational Materials Science, 2010, 49(1),35.
8 Mainguy M, Tognazzi C, Torrenti J M, et al. Cement & Concrete Research, 2000, 30(1),83.
9 Gérard B, Bellego C L, Bernard O.Materials and Structures, 2002, 35(10),632.
10 Liu R G,Zhang B,Yan P Y. Journal of the Chinese Ceramic Society, 2013,41( 11),1487(in Chinese).
刘仍光,张波,阎培渝.硅酸盐学报, 2013, 41( 11),1487.
11 Yu J. Test and analysis of durability degradation process of slag-cement-based materials under calcium corrosion conditions. Master's Thesis, Nanjing University of Science and Technology, China, 2016(in Chinese).
余健. 钙溶蚀条件下矿渣-水泥基材料耐久性退化过程试验与分析研究.硕士学位论文,南京理工大学, 2016.
12 Yu J, Li G Y, Leung C K Y. Construction & Building Materials, 2018, 161(10),509.
13 Hani, Nadine, Nawawy, et al. Construction and Building Materials, 2018, 65(20),504.
14 Cheng A, Chao S J, Lin W T, et al. Advanced Materials Research, 2011, 365,3.
15 Han F H, Liu R G, Yan P Y. Construction & Building Materials, 2014, 68(15),630.
16 Tang Y J, Zuo X B, He S L, et al. Journal of the Chinese ceramic Society, 2016, 44(11),1579(in Chinese).
汤玉娟, 左晓宝, 何绍丽,等. 硅酸盐学报, 2016, 44(11),1579.
17 Müllauer M, Beddoe R E, Heinz D, et al. Cement & Concrete Compo-sites,2015,58,129.
18 Ding X Q, Zhao X Y, Xu X W, et al. New Building Material, 2020, 47(3),40(in Chinese).
丁向群, 赵欣悦, 徐晓婉,等. 新型建筑材料, 2020, 47(3),40.
19 Jalal M, Mansouri E, Sharifipour M, et al. Materials and Design,2012,34,389.
20 Yao F G, Liu B H. Journal of Highway and Transportation Research and Development,2017(11),111(in Chinese).
姚福贵,刘炳华. 公路交通科技:应用技术版,2017(11),111.
21 Martins T, Pacheco Torgal F, Miraldo S, et al. Indian Concrete Journal,2016,90(1),23.
22 Yu X P. Fujian Construction Science & Technology, 2012(4), 85(in Chinese).
余喜平.福建建设科技, 2012(4), 85.
23 Liu J P, Mu S, Cai J S, et al. Journal of Building Materials, 2019, 40(1),185(in Chinese).
刘加平, 穆松, 蔡景顺, 等. 建筑结构学报, 2019, 40(1),185.
24 Wan K, Xu Q, Li L, et al. Construction & Building Materials, 2013, 48(19),11.
25 Choi Y S, Yang E I. Nuclear Engineering & Design, 2013, 259,126.
26 Tang Y J, Zuo X B, Yin G J, et al. Journal of Building Materials, 2017, 20(2),239(in Chinese).
汤玉娟, 左晓宝, 殷光吉, 等. 建筑材料学报, 2017, 20(2),239.
27 Choi P, Yeon J H, Yun K K. Cement & Concrete Composites, 2016, 70,69.
[1] 席雅允, 沈玉, 刘娟红, 吴瑞东, 许鹏玉. 化学激发对煤气化渣-水泥体系抗压强度影响机理研究[J]. 材料导报, 2021, 35(z2): 262-267.
[2] 胡学飞. 低熔点玻璃粉对水冷壁涂层组织和性能的影响[J]. 材料导报, 2021, 35(Z1): 189-194.
[3] ZEZE Armande Loraine Phalé, 徐红岩, 张默, 马国伟. 环氧树脂-地聚物复合涂层材料耐海水腐蚀性研究[J]. 材料导报, 2021, 35(Z1): 600-606.
[4] 翟建树, 李春燕, 田霖, 卢煜, 寇生中. Fe基非晶涂层耐腐蚀性能的影响因素及提升措施综述[J]. 材料导报, 2021, 35(3): 3129-3140.
[5] 马昆林, 王中志, 龙广成, 谢友均, 曾晓辉. 动荷载-水-冻融共同作用下混凝土宏观裂缝扩展与演变的研究进展[J]. 材料导报, 2021, 35(19): 19091-19098.
[6] 高君华, 黄浩, 曾冲, 郑瑞伦. 孔隙率对传感器多孔电极材料导电性能的影响[J]. 材料导报, 2021, 35(18): 18018-18023.
[7] 曹忠亮, 郭登科, 林国军, 韩振宇, 富宏亚. 热塑性纤维铺放构件的层间剪切强度及孔隙率[J]. 材料导报, 2021, 35(18): 18205-18209.
[8] 张高展, 葛竞成, 张春晓, 杨军, 刘开伟, 王爱国, 孙道胜. 养护制度对混凝土微结构形成机理的影响进展[J]. 材料导报, 2021, 35(15): 15125-15133.
[9] 郑少军, 刘天乐, 高鹏, 蒋国盛, 冯颖韬, 李丽霞, 陈宇. 固井水泥石孔隙结构演变及力学强度发展规律[J]. 材料导报, 2021, 35(12): 12092-12098.
[10] 李嘉鹏, 李威翰, 刘嘉良, 李永玲, 李飞. 透水路面制品渗透性能的研究进展[J]. 材料导报, 2020, 34(Z2): 265-268.
[11] 张绍康, 王茹, 徐玲琳, 钟世云, 张国防, 王培铭. 羟乙基甲基纤维素改性水泥砂浆的物理力学性能和孔隙率[J]. 材料导报, 2020, 34(Z2): 607-611.
[12] 陈镇杉, 吴玉生, 彭鹏飞, 黄舟, 陈梅红, 蔡博群. 氟铝络合物对硫酸铝型速凝剂性能的影响[J]. 材料导报, 2020, 34(Z1): 178-180.
[13] 盖海东, 冯春花, 董一娇, 赵倩, 李东旭. 纳米压痕技术应用于水泥基材料的研究进展[J]. 材料导报, 2020, 34(7): 7107-7114.
[14] 戴俊, 钱春香, 陈竞, 庞忠华. 无水乙酸钠对磷酸钾镁水泥水化性能和微观形貌的影响[J]. 材料导报, 2020, 34(6): 6066-6074.
[15] 丁杨, 邓满宇, 周双喜, 王中平, 董晶亮, 魏永起. 基于COMSOL®模拟材料孔隙率与导热系数的演变关系[J]. 材料导报, 2019, 33(z1): 211-215.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed