Please wait a minute...
材料导报  2021, Vol. 35 Issue (3): 3129-3140    https://doi.org/10.11896/cldb.20040058
  金属与金属基复合材料 |
Fe基非晶涂层耐腐蚀性能的影响因素及提升措施综述
翟建树1, 李春燕1,2, 田霖1, 卢煜1, 寇生中1,2
1 兰州理工大学材料科学与工程学院,兰州 730050;
2 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
A Review of Corrosion Resistance of Fe-based Amorphous Coatings: Influencing Factors and Enhancing Methods
ZHAI Jianshu1, LI Chunyan1,2, TIAN Lin1, LU Yu1, KOU Shengzhong1,2
1 School of Materials Science and Engineering, Lanzhou University of Technology,Lanzhou 730050, China;
2 State Key Laboratory of Advanced Processing and Reuse of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 13440KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 非晶合金的结构特点是短程有序,长程无序,不存在晶界和位错等晶体缺陷。Fe基块体非晶合金尽管具有超高的硬度和强度、出色的耐腐蚀和耐磨性,且成本低廉,但是也因非晶形成能力低及室温脆性而大部分以粉末、薄带、毫米棒等形式存在,使其推广和应用受到较大限制。将非晶合金制备成涂层,不仅能有效弥补上述不足,还保留了块体非晶合金固有的特性,已在石油化工、汽车机械、海洋工程等制造和再制造领域获得应用。
超音速火焰喷涂(HVOF)、等离子喷涂(APS)等技术已被证实能够在钢材基体上制备Fe基非晶涂层。根据诸多研究结果可知,影响Fe基非晶涂层耐腐蚀性能的因素主要有:非晶成分(如Cr、Mo、Ni、Nb等元素)、孔隙率、晶化相、粉末粒径、氧化物、喷涂工艺及参数、外界环境等。同时,研究者们还在提高喷涂非晶涂层耐腐蚀性的工艺措施方面取得了一些成果,包括热处理、封孔处理、激光重熔、氧化处理、离子注入、极化处理等。这些努力极大地推动了Fe基非晶涂层在海洋装备腐蚀防护中的实际应用。
本文总结了Fe基非晶涂层耐腐蚀性能的影响因素和提升措施方面的相关研究进展,并简要分析了研究中存在的不足以及未来发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
翟建树
李春燕
田霖
卢煜
寇生中
关键词:  Fe基非晶涂层  耐腐蚀性能  钝化膜  孔隙率  非晶含量    
Abstract: The structural characteristics of amorphous alloys are short-range order, long-range disorder, and no crystal defects such as grain boundaries and dislocations. Fe-based bulk amorphous alloys own lots of merits including ultra-high hardness and strength, excellent corrosion resis-tance and wear resistance, and low cost, nevertheless exist mostly in the forms of powders, thin strips, millimeter bars, etc. due to low glass forming ability and room-temperature brittleness. This intrinsic shortcoming has become the obstacle to the promotion and application of Fe-based amorphous alloys. Fabricating alloy coatings instead of bulks, despite being regarded as a good solution to this problem, can retain the inherent merits of bulk amorphous alloys, and has found wide application in the manufacturing and remanufacturing fields of petrochemical industry, automotive machinery, and marine engineering.
Though high velocity oxy-fuel (HVOF) spraying and air plasma spraying (APS) have been proven competent to coat Fe-based amorphous alloys on surface of steel substrate, the corrosion resistance of the obtained coatings depend on various factors. According to relevant researches, properties of the coating such as amorphous constituents (elements of Cr, Mo, Ni, Nb, etc.), porosity, crystalline phases, oxides generated, and the spraying process including size of particles fed, type of spraying technique, spraying parameters, as well as external factors, all of them influence directly or indirectly the protective effect of Fe-based amorphous alloy coatings against corrosive media. Furthermore, researchers have also acquired helpful outputs in methods to improve corrosion resistance, exemplified by heat treatment, pore-sealing treatment, laser remelting, oxidation treatment, ion injection, and polarization treatment. These achievements benefit largely the practical application of Fe-based amorphous coatings to the corrosion protection of marine equipment.
This paper provides a summary of the factors affecting the corrosion resistance of Fe-based amorphous coatings and the measures to improve the corrosion resistance of the coating in the post-treatment. It also gives a brief discussion on the existent problems and the future prospect.
Key words:  Fe-based amorphous coating    corrosion resistance    passive film    porosity    amorphous content
               出版日期:  2021-02-10      发布日期:  2021-02-19
ZTFLH:  TG174.4  
基金资助: 国家自然科学基金资助项目(51861021; 51661016; 51571105); 兰州理工大学红柳一流学科建设计划项目
作者简介:  翟建树,2019年6月毕业于兰州理工大学,在材料成型与控制工程专业获得学士学位。现为兰州理工大学硕士研究生,在李春燕教授的指导下进行研究。目前主要研究领域为Fe基非晶涂层。
李春燕,兰州理工大学材料学院教授、硕士研究生导师。2006年获得兰州理工大学材料学专业硕士学位并留校任教,2013年获得兰州理工大学材料加工工程专业博士学位。2018年被评为“甘肃省优秀学位论文指导教师”,2019年获得“西部地区人才培养特别项目”出国访学资助。2020年被评为兰州理工大学“科研工作先进个人”。中国材料研究学会高级会员,甘肃省材料学会会员,《精密成形工程》期刊编委。Applied Surface Science、Rare Metals、Journal of Non-Crystalline Solids、Physics B等国际权威期刊审稿人。长期从事非晶合金、高熵合金等相关领域的研究。近年来,在非晶合金和高熵合金领域发表论文50余篇,包括Intermetallics、Journal of Materials Science、Journal of Non-Crystalline Solids、Surface Engineering、Progress in Nature Science等。申请国家发明专利10项。获得甘肃省冶金有色工业协会科技进步二等奖1项、甘肃省自然科学技术奖三等奖2项。
引用本文:    
翟建树, 李春燕, 田霖, 卢煜, 寇生中. Fe基非晶涂层耐腐蚀性能的影响因素及提升措施综述[J]. 材料导报, 2021, 35(3): 3129-3140.
ZHAI Jianshu, LI Chunyan, TIAN Lin, LU Yu, KOU Shengzhong. A Review of Corrosion Resistance of Fe-based Amorphous Coatings: Influencing Factors and Enhancing Methods. Materials Reports, 2021, 35(3): 3129-3140.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040058  或          http://www.mater-rep.com/CN/Y2021/V35/I3/3129
1 Feng L C, He Y Q, Qiao B, et al.Hot Working Technology,2013(24),13(in Chinese).冯立超,贺毅强,乔斌,等.热加工工艺,2013(24),13.2 Zhang X K.Amorphous materials and applications, Beijing Science and Technology Press, China,1987(in Chinese).章熙康. 非晶态材料及其应用,北京科学技术出版社,1987.3 Koch G H, Brongers M P H, Thompson N G, et al.Journal of Endocrinology,2002,122(1),23.4 Zeng R C, Han E H.Corrosion and protection of materials, Chemical Industry Press, China,2006(in Chinese).曾荣昌,韩恩厚.材料的腐蚀与防护,化学工业出版社,2006.5 Liu J J.Material wear principle and wear resistance, Tsinghua University Press, China,1993(in Chinese).刘家浚. 材料磨损原理及其耐磨性,清华大学出版社,1993.6 Elsharif M, Mcdougall J, Chisholm C U.Transactions of the Institute of Metal Finishing,1999,77(4),139.7 Li J Z, Lin A, Gan F X.Electroplating & Finishing,2004,23(5),30(in Chinese).李家柱,林安,甘复兴.电镀与涂饰,2004,23(5),30.8 Ma X L.Preparation of Fe-based amorphous coatings and microstructure and properties. Master's Thesis, Xi'an Shiyou University, China,2016(in Chinese).马晓琳. Fe基非晶态涂层的制备及其组织性能硏究.硕士学位论文,西安石油大学,2016.9 Luo Q, Sun Y J, Jiao J, et al.Surface & Coatings Technology,2018,334,253.10 Li Y C, Zhang C, Xing W, et al.ACS Applied material & Interfaces,2018,10,43144.11 Wang W H.Progress in Physics,2013,33(5),177(in Chinese).汪卫华. 物理学进展,2013,33(5),177.12 Inoue A, Kong F L, Zhu S L,et al.Intermetallics,2015,58(58),20.13 Liang X B, Cheng J B, Feng Y, et al.Journal of Materials Engineering,2017,45(9),1(in Chinese).梁秀兵,程江波,冯源,等.材料工程,2017,45(19),1.14 Zhang S D, Zhang W L, Wang S G, et al.Corrosion Science,2015,93,211.15 Nie G M, Huang C, Li B, et al.Surface Technology,2017,46(11),6(in Chinese).聂贵茂,黄诚,李波,等.表面技术,2017,46(11),6.16 Wei X, Dong C F, Yi P, et al.Corrosion Science,2018,136,119.17 Li Y S, Wang S W, Wang X W, et al.Journal of Materials Science & Technology,2020,43,32.18 Guo S F, Lai M L, Ding K L, et al.Surface Technology,2019,48(3),40(in Chinese).郭胜锋,赖利民,丁凯露,等.表面技术,2019,48(3),40.19 Liang D D, Wei X S, Wang Y, et al.Journal of Alloys and Compounds,2018,766,964.20 Wang M Q, Zhou Z H, Wang Q J, et al.Results in Physics,2019,15,102708.21 Si J J, Chen X H, Cai Y H, et al.Corrosion Science,2016,107,123.22 Joonoh Moon, Heon-Young Ha, Seong-Jun Park, et al.Journal of Alloys and Compounds,2019,775,1136.23 Xiong B, Li X, Zheng J B, et al.Rare Metal Materials and Engineering,2018,47(2),701(in Chinese).熊斌,李雪,郑继波,等.稀有金属材料与工程,2018,47(2),701.24 Yang F, Guo S F, Lan A D, et al.Journal of Iron and Steel Research(International),2016,23(11),1200.25 Wu J, Zhang S D, Sun W H, et al.Corrosion Science,2018,136,161.26 Guo S F, Chan K C, Xie S H, et al.Journal of Non-Crystalline Solids,2013,369,29.27 Li J W, Yang L J, Ma H R, et al.Materials & Design,2016,95(Apr.),225.28 Si J J, Wu Y D, Wang T, et al.Applied Surface Science,2018,445(Jul.1),496.29 Madinehei M, Bruna P, Duarte M J, et al.Journal of Alloys and Compounds,2014,615,S128.30 Xia H X, Chen Q J, Wang C J.Journal of Rare Earths,2017,35(4),406.31 Burkov A A, Chigrin P G.Surface & Coatings Technology,2018,351,68.32 Zhou J L, Kong D J.Journal of Alloys and Compounds,2019,795,416.33 Zhao R L, Feng L M, Liu H T, et al.Metallurgy and Materials,2019,39(3),155(in Chinese).赵仁亮,冯立明,刘海涛,等.冶金与材料,2019,39(3),155.34 Li W, Li H L, Zhu S J, et al.Journal of Alloys and Compounds,2018,762,1.35 Jia C G, Pang J, Pan S P, et al.Corrosion Science,2019,147,94.36 Zheng S, Li J W, Zhang J J, et al.Journal of Non-Crystalline Solids,2018,493,33.37 Li H F, Zheng Y F.Acta Biomaterialia,2016,36,1.38 Zhang H, Hu Y, Hou G L, et al.Journal of Non-Crystalline Solids,2014,406,37.39 Chu Z H, Wei F S, Zheng X W, et al.Journal of Alloys and Compounds,2019,785,206.40 Gostin P F, Oswald S, Schultz L, et al.Corrosion Science,2012,62,112.41 Gong Y B, Wang S L, Nie G M.China Surface Engineering,2016,29(5),87(in Chinese).龚玉兵,王善林,聂贵茂.中国表面工程,2016,29(5),87.42 Liang X B, Wang H, Shang C J, et al.China Surface Engineering,2017,30(1),101(in Chinese).梁秀兵,王慧,商俊超,等.中国表面工程,2017,30(1),101.43 Zhang S D, Wu J, Qi W B, et al.Corrosion Science,2016,110,57.44 Zhang H S, Wang F C, Ma Z, et al.Materials Reports,2006,20(7),16(in Chinese).张红松,王富耻,马壮,等.材料导报,2006,20(7),16.45 Wu R M, Sun Z F, Lian Y Z, et al.Packaging Engineering,2016,37(3),36(in Chinese).吴若梅,孙兆飞,连运增,等.包装工程,2016,37(3),36.46 Tavoosi M, Barahimi A.Surfaces and Interfaces,2017,8,103.47 Arman Zarebidaki, Amir Seifoddini, Taher Rabizadeh.Journal of Alloys and Compounds,2018,736,17.48 Jiao J, Luo Q, Wang Y, et al.Hot Working Technology,2018,47(12),88(in Chinese).焦津,罗强,王勇,等.热加工工艺,2018,47(12),88.49 Coimbrão D D, Zepon G, Koga G Y, et al.Journal of Alloys and Compounds,2020,826,154123.50 Qin Y J, Wu Y P, Zhang J F, et al.Transactions of Nonferrous Metals Society of China,2015,25(4),1144.51 Zhang H, Xie Y Y, Zheng X B, et al.Hot Working Technology,2015(6),105(in Chinese).张欢,谢有桃,郑学斌,等.热加工工艺,2015(6),105.52 Zhang C, Guo R Q, Yang Y, et al.Electrochimica Acta,2011,56(18),6380.53 Wu J, Zhang S D, Sun W H, et al.Surface & Coatings Technology,2018,335,205.54 Zhang C, Chan K C, Wu Y, et al.Acta Materials,2012,60,4152.55 Sadeghimeresht E, Markocsan N, Joshi S.Surface & Coatings Technology,2017,317,17.56 Esmaeil Sadeghi, Shrikant Joshi.Surface & Coatings Technology,2019,371,20.57 Bakare M S, Voisey K T, Chokethawai K, et al.Journal of Alloys and Compounds,2012,527,210.58 Xie L, Xiong X, Wang Y M.Materials Science and Engineering of Powder Metallurgy,2019,24(3),212(in Chinese).解路,熊翔,王跃明.粉末冶金材料科学与工程,2019,24(3),212.59 Anil Kumar, Sapan K. Nayak, Pavan Bijalwan,et al.Surface & Coatings Technology,2019,370,255.60 Pavan Bijalwan, Anil Kumar, Sapan K Nayak,et al.Journal of Alloys and Compounds,2019,796,47.61 Henao J, Concustell A, Cano I G, et al.Journal of Alloys and Compounds,2015,622,995.62 Zuo Y, Wang S L, Gong Y B.Journal of Netshape Forming Engineering,2018,10(5),113(in Chinese).左瑶,王善林,龚玉兵.精密成形工程,2018,10(5),113.63 Yang X L, Wang S L, Gong Y B, et al.Journal of Netshape Forming Engineering,2018,10(5),107(in Chinese).杨翔麟,王善林,龚玉兵,等.精密成形工程,2018,10(5),107.64 Wang Y F, Li H, Sun X, et al.Chinese Journal of Lasers,2018,45(3),216(in Chinese).王彦芳,李豪,孙旭,等.中国激光,2018,45(3),216.65 Yang X, Ma W, Han J P, et al.Thermal Spray Technology,2019,11(1),71(in Chinese).杨曦,马文,韩继鹏,等.热喷涂技术,2019,11(1),71.66 Yang Z X, Kan B, Li J X, et al.Materials (Basel, Switzerland),2017,10(11),1307.67 Xiong X L, Ma H X, Tao X, et al.Electrochimica Acta,2017,255,230.68 Zhang C, Zhang Z W, Chen Q, et al.Journal of Alloys and Compounds,2018,758,108.69 Wang Y, Li M Y, Sun L L, et al.Journal of Alloys and Compounds,2018,738,37.70 Wang Y, Li Y, Lu Y, et al.Chemical Engineering & Machinery,2016,43(3),284(in Chinese).王勇,李洋,吕妍,等.化工机械,2016,43(3),284.71 Wang Y, Li K Y, Sun Z X, et al.Chemical Engineering & Machinery,2017,44(4),394(in Chinese).王勇,李柯远,孙振旭,等.化工机械,2017,44(4),394.72 Wang Y, Li M Y, Zhu F, et al.Surface & Coatings Technology,2020,385.73 Zhou M, Kiros Hagos, Huang H Z, et al.Journal of Non-Crystalline So-lids,2016,452,50.74 Liu M M, Hu H X, Zheng Y G.Surface & Coatings Technology,2017,309,579.75 Mingo B, Arrabal R, Mohedano M, et al.Applied Surface Science,2018,433,653.76 Wang Q Y, Xi Y C, Zhao Y H, et al.Materials Characterization,2017,127,239.77 Jiao J, Luo Q, Wei X S, et al.Journal of Alloys and Compounds,2017,714,356.78 Liu J, Jiang C P.Hot Working Technology,2015,44(10),193(in Chinese).刘军,姜超平.热加工工艺,2015,44(10),193.79 Zheng Z B, Zheng Y G, Sun W H, et al.Tribology International,2015,90,393.80 Wu Y X, Luo Q, Jiao J, et al.Metallic Functional Materials,2016,23(1),12(in Chinese).吴仡璇,罗强,焦津,等.金属功能材料,2016,23(1),12.81 Lei S, Hu R, Pan Y, et al.Hot Working Technology,2016,45(6),244(in Chinese).雷声,胡蓉,潘勇,等.热加工工艺,2016,45(6),244.82 Han J J, Gao Z, Lu Y, et al.Hot Working Technology,2015,44(14),187(in Chinese).韩建军,高振,鲁元,等.热加工工艺,2015,44(14),187.83 Huang F, Kang J J, Yue W, et al.Journal of Alloys and Compounds,2020,820.84 Liu M M, Hu H X, Zheng Y G, et al.Surface and Coatings Technology,2019,367,311.85 Shravana Katakam, Vivek Kumar, Santhanakrishnan S,et al.Journal of Alloys and Compounds,2014,604,266.86 Zhang Y J, Song B, Ming J, et al.Corrosion Science,2020,163.87 Muhammad Mudasser Khan, Ishraq Shabib, Waseem Haider.Scripta Materialia,2019,162,223.88 Chiranjit Poddar, Jayaraj J, Amirthapandian S, et al.Intermetallics,2019,113,106571.89 Yuan L X, Tang D W, Zou S L, et al.Hot Working Technology,2017(8),170(in Chinese).袁联雄,唐德文,邹树梁,等.热加工工艺,2017(8),170.90 Jiang C P, Liu W Q.Surface Technology,2017,46(5),238(in Chinese).姜超平,刘王强.表面技术,2017,46(5),238.
[1] 李嘉鹏, 李威翰, 刘嘉良, 李永玲, 李飞. 透水路面制品渗透性能的研究进展[J]. 材料导报, 2020, 34(Z2): 265-268.
[2] 梁广, 朱胜, 王文宇, 王晓明, 韩国峰, 任智强. 铝合金腐蚀防护技术研究现状及发展趋势[J]. 材料导报, 2020, 34(Z2): 429-436.
[3] 张绍康, 王茹, 徐玲琳, 钟世云, 张国防, 王培铭. 羟乙基甲基纤维素改性水泥砂浆的物理力学性能和孔隙率[J]. 材料导报, 2020, 34(Z2): 607-611.
[4] 梁惠东, 郑汉杰, 杨浩, 王晨, 陈俊锋, 汪炳叔. 氮添加量对块体纳米晶NdFeB永磁材料的影响[J]. 材料导报, 2020, 34(8): 8025-8030.
[5] 瞿猛, 唐建国, 叶凌英, 李承波, 李建湘, 周旺, 邓运来. 过时效与添加Zr对Al-Zn-Mg合金耐腐蚀性能影响的对比[J]. 材料导报, 2020, 34(2): 2083-2087.
[6] 李萧, 胡水平, 韩天棋. Nd、Y对AZ31镁合金热轧退火薄板耐蚀性的影响[J]. 材料导报, 2020, 34(10): 10088-10092.
[7] 施佳鑫, 朱卫华, 朱红梅, 陈志勇, 刘晋京, 史新灵, 王新林. CaB6对激光熔覆生物陶瓷涂层组织和生物学性能的影响[J]. 材料导报, 2020, 34(10): 10030-10034.
[8] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[9] 丁杨, 邓满宇, 周双喜, 王中平, 董晶亮, 魏永起. 基于COMSOL®模拟材料孔隙率与导热系数的演变关系[J]. 材料导报, 2019, 33(z1): 211-215.
[10] 万晔, 刘晶, 谭丽丽, 陈军修, 东家慧, 杨柯. 镁粉表面钙磷涂层的制备与性能[J]. 材料导报, 2019, 33(z1): 283-287.
[11] 卢林, 吴文恒, 龙倩蕾, 张亮, 张济山. 喷射成形工艺参数对沉积坯质量的影响[J]. 材料导报, 2019, 33(3): 390-394.
[12] 刘世丰, 曾建民. 正向电压对赤泥等离子体电解氧化层结构和耐蚀性的影响[J]. 材料导报, 2019, 33(22): 3720-3726.
[13] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[14] 任智炜, 罗兵辉, 郑亚亚, 高阳, 何川. Mg、Si含量对Al-Mg-Si合金显微组织与性能的影响[J]. 材料导报, 2019, 33(18): 3072-3076.
[15] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed