Please wait a minute...
材料导报  2021, Vol. 35 Issue (19): 19091-19098    https://doi.org/10.11896/cldb.20060277
  无机非金属及其复合材料 |
动荷载-水-冻融共同作用下混凝土宏观裂缝扩展与演变的研究进展
马昆林, 王中志, 龙广成, 谢友均, 曾晓辉
中南大学土木工程学院,长沙 410075
Propagation and Evolution of Macroscopic Crack of Concrete Under Dynamic Load-Water-Freeze-Thaw Action: a Review
MA Kunlin, WANG Zhongzhi, LONG Guangcheng, XIE Youjun, ZENG Xiaohui
School of Civil Engineering, Central South University, Changsha 410075, China
下载:  全 文 ( PDF ) ( 5573KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 混凝土是土木工程建设的重要材料。由于设计、施工、服役环境及其材料自身等原因,混凝土在投入使用时就存在部分非结构裂缝。工程实践发现,在长期动荷载作用下,混凝土裂缝会在长度、宽度和深度方向出现扩展和演变,而动荷载和环境共同作用将会加快裂缝的扩展,加速混凝土材料的劣化,导致混凝土力学和耐久性能降低,严重影响其结构安全。
动荷载的长期作用将导致混凝土裂缝尖端附近的应力场和位移场出现复杂的变化,从而引起应力集中和应变能释放,当裂缝尖端应力强度因子大于材料断裂韧度时,裂缝将发生失稳扩展。动荷载对裂缝中的水产生动水压,动水压作用下水对裂缝内壁产生反复冲刷和溶蚀,导致裂缝内壁的集料和水化产物流失,从而加速了裂缝的扩展。低温冻融过程中,水在裂缝内壁反复结冰溶解,在裂缝内产生了冻胀应力,而动荷载作用使裂缝发生的体积变化增大了冻胀应力,同时冻融对裂缝内壁的集料和水化产物产生了剥蚀作用,加速了混凝土裂缝的扩展。动载-水-冻融共同作用对混凝土宏观裂缝的扩展演化更加复杂,目前尚无系统研究。
本文归纳了目前对混凝土宏观裂缝在动载-水-冻融共同作用下扩展演变研究的最新进展,梳理了动荷载作用下水和冻融对裂缝扩展演化的加速机制、裂缝扩展与演化的计算方法和有效预测模型,并提出了该研究方向需要进一步解决的问题,以期为进一步掌握混凝土结构的长期服役性能、完善混凝土结构损伤理论及养护维修技术奠定基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马昆林
王中志
龙广成
谢友均
曾晓辉
关键词:  混凝土  宏观裂缝  动荷载-水-冻融耦合  裂缝扩展  冲刷溶蚀  冻胀剥蚀    
Abstract: Concrete is an important material in civil engineering construction. Due to design, construction, service environment and material itself, some non-structural cracks exist in concrete when it is put into use. Engineering practice has found that under long-term dynamic load, concrete cracks will expand and evolve in the length, width and depth directions, and the combined action of dynamic load and environment will accelerate the expansion of cracks, accelerate the deterioration of concrete materials, and lead to concrete mechanics and durability. Lowering seriously affects structural safety.
The long-term action of dynamic load will cause complex changes in the stress field and displacement field near the crack tip, which will cause stress concentration and strain energy release. When the crack tip stress intensity factor is greater than the material fracture toughness, the crack will grow instability. The dynamic load will generate dynamic hydraulic pressure on the water in the cracks. Under the action of dynamic hydraulic pressure, the water will repeatedly scour and dissolve the inner walls of the cracks, resulting in the loss of aggregates and hydration products on the inner walls of the cracks and accelerating the crack propagation. In the process of low-temperature freezing and thawing, water repeatedly freezes and dissolves on the inner wall of the crack, resulting in frost heave stress in the crack. The dynamic load causes the volume change of the crack to increase the frost heave stress. At the same time, the freeze-thaw affects the aggregate on the inner wall of the crack. And hydration products produced denudation and accelerated the expansion of concrete cracks. The combined effect of dynamic load-water-freeze-thaw on the propagation and evolution of concrete macroscopic cracks is more complicated, and there is no systematic study yet.
This paper summarizes the latest developments in the research on the expansion and evolution of concrete macroscopic cracks under the combined action of dynamic load-water-freeze-thaw, combs the acceleration mechanism of water and freeze-thaw on the crack propagation evolution under dynamic load, and the calculation method of crack propagation and evolution and effective predictive models. The problems that need to be further solved in this research direction are proposed, in order to lay the foundation for further mastering the long-term service performance of concrete structures, perfecting concrete structure damage theory and maintenance technology.
Key words:  concrete    macroscopic crack    coupling of dynamic load-water-freeze-thaw    crack propagation    scouring dissolution    frost heaving denudation
               出版日期:  2021-10-10      发布日期:  2021-11-03
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51678569;11790283);国家重点研发计划项目(2017YFB1201204)
通讯作者:  makunlin@csu.edu.cn   
作者简介:  马昆林,中南大学土木工程学院,教授。主要从事海绵城市、路面结构设计及损伤理论、固废资源化利用、高性能混凝土技术及高速铁路无砟轨道方面的研究和工程应用。发表学术论文100余篇,获省部级以上科研奖励6项,获专利授权10项,主编教材3部,出版专著1部,作为主要起草人编制规范4部。
引用本文:    
马昆林, 王中志, 龙广成, 谢友均, 曾晓辉. 动荷载-水-冻融共同作用下混凝土宏观裂缝扩展与演变的研究进展[J]. 材料导报, 2021, 35(19): 19091-19098.
MA Kunlin, WANG Zhongzhi, LONG Guangcheng, XIE Youjun, ZENG Xiaohui. Propagation and Evolution of Macroscopic Crack of Concrete Under Dynamic Load-Water-Freeze-Thaw Action: a Review. Materials Reports, 2021, 35(19): 19091-19098.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060277  或          http://www.mater-rep.com/CN/Y2021/V35/I19/19091
1 Wang Y Z, Liu Z, Fu K, et al. Construction and Building Materials, 2020, 236,117556.
2 Liu P, Chen Y, Wang W L, et al. Chemical Physics Letters, 2020, 745,137254.
3 Wang H L, Dai J G, Sun X Y, et al. Construction and Building Mate-rials, 2016, 107,216.
4 Palin D, Wiktor V, Jonkers H M. Cement and Concrete Research, 2015, 73,17.
5 Kayondo M, Combrinck R, Boshoff W P. Construction and Building Materials, 2019, 225,88.
6 Lin G, Qi C S, Zhou H T. Engineering Fracture Mechanics, 1994, 47(2), 269.
7 Xu W, Waas A M. Engineering Fracture Mechanics, 2016, 152,126.
8 Kravchenko S G, Kravchenko O G, Sun C T. Engineering Fracture Mechanics, 2014, 119,132.
9 Xu S L, Zhao Y H, Wu Z M. Journal of Materials in Civil Engineering, 2006, 18(6), 817.
10 Hoseini M, Bindiganavile V, Banthia N. Cement and Concrete Compo-sites, 2009, 31(4),213.
11 Luo D M, Niu D T, Su L. Engineering Mechanics, 2019, 36(1),1(in Chinese).
罗大明,牛荻涛,苏丽. 工程力学, 2019, 36(1), 1.
12 Qin X, Shen A Q, Guo Y C, et al. Journal of South China University of Technology(Natural Science Edition), 2017, 45(6),81(in Chinese).
覃潇,申爱琴,郭寅川,等. 华南理工大学学报(自然科学版), 2017, 45(6), 81.
13 Ma K L, Wu Z M, Hu X Z, et al. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43(5),978.
14 Guo Y C, Shen A Q, He T Q, et al. Journal of Traffic and Transportation Engineering, 2016, 16(5), 1(in Chinese).
郭寅川,申爱琴,何天钦,等. 交通运输工程学报, 2016, 16(5), 1.
15 Ma K L, Li S J, Long G C, et al. Journal of Materials In Civil Enginee-ring, 2020, 32(6),4020147.
16 Long G C, Yang Z X, Bai C N, et al. Journal of the Chinese Ceramic Society, 2019, 47(7),855(in Chinese).
龙广成,杨振雄,白朝能,等.硅酸盐学报, 2019, 47(7), 855.
17 Yang J, Kong B, Cai C S, et al. Journal of Transportation Engineering, 2016, 142(8),4016031.
18 Su L W. Study on the durability behavior of marine concrete structures under loading and ocean environment. Ph.D. Thesis, South China University of Technology,China,2016(in Chinese).
苏林王. 荷载与海洋环境耦合作用下海工混凝土结构耐久性研究. 博士学位论文,华南理工大学, 2016.
19 Che M C, Wang K, Xie L. Engineering Failure Analysis,2013,27(1),272-285.
20 Ma K L, Long G C, Xie Y J. Journal of the China Railway Society, 2018, 40(8),116(in Chinese).
马昆林,龙广成,谢友均. 铁道学报, 2018, 40(8), 116.
21 Zhang Y Z, Zhang S M, Wei G, et al. Advances In Civil Engineering, 2019, 2019(8), 1.
22 Chen X C, Du C B, You M Y, et al. Engineering Fracture Mechanics, 2017, 179,314.
23 Wang Y, Hu S W, Fan X Q, et al. Construction and Building Materials, 2019, 199,613.
24 Cao S H, Yang R S, Liu X Y, et al. China Railway Science, 2016, 37(3),9(in Chinese).
曹世豪,杨荣山,刘学毅,等.中国铁道科学, 2016, 37(3),9.
25 Yang R S, Cao S H, Xie L, et al. Journal of the China Railway Society, 2017, 39(6),95(in Chinese).
杨荣山,曹世豪,谢露,等. 铁道学报, 2017, 39(6),95.
26 Xu G H, Liu X Y, Yang R S, et al. Journal of the China Railway Society, 2014, 36(10),76(in Chinese).
徐桂弘,刘学毅,杨荣山,等.铁道学报, 2014, 36(10),76.
27 Wang H L, Li Q B.Journal of Hydraulic Engineering,2006(8),958(in Chinese).
王海龙,李庆斌. 水利学报, 2006(8),958.
28 Lu J Z, Zhu K F, Tian L Z, et al. Construction and Building Materials, 2017, 152,847.
29 Ma Z M, Zhao T J, Yang J. Journal of Materials in Civil Engineering, 2017, 29(8),4017071.
30 Ma Z M, Zhu F Z, Ba G Z. Construction and Building Materials, 2019, 196,375.
31 Li N, Long G C, Fu Q, et al. Construction and Building Materials, 2019, 200,198.
32 Tong F Z. The influence of frost heave on crack's propagation of ballastless track. Master's Thesis, Shijiazhuang Tiedao University,China,2018(in Chinese).
仝凤壮. 无砟轨道裂纹内水的冻胀对裂纹扩展的影响. 硕士学位论文,石家庄铁道大学, 2018.
33 Hong J X, Miu C W, Huang W, et al. China Civil Engineering Journal, 2012, 45(6),83(in Chinese).
洪锦祥,缪昌文,黄卫,等. 土木工程学报, 2012, 45(6),83.
34 Wang J R, Chen Y L, Fu Y. Journal of Water Resources and Water Engineering, 2019, 30(2),178(in Chinese).
王靖荣,陈有亮,傅喻. 水资源与水工程学报, 2019, 30(2),178.
35 Kazberuk M K. Archives of Civil and Mechanical Engineering, 2013, 13(2), 254.
36 Sun M, Xin D B, Zou C Y. Mechanics of Materials, 2019, 139,103192.
37 Li B, Mao J, Shen W G, et al. Construction and Building Materials, 2019, 211,1050.
38 Wawrzeńczyk J, Molendowska A. Procedia Engineering, 2017, 193,35.
39 Rieger M, Moser C, Brunnhofer P, et al. International Journal of Fatigue, 2020, 132,105360.
40 Carpinteri A, Spagnoli A, Vantadori S. Engineering Fracture Mechanics, 2010, 77(6),974.
41 Xu Y J, Yuan H. Engineering Fracture Mechanics, 2009, 76(2), 165.
42 Zhou M D, Tang L, Li C J, et al. Journal of China & Foreign Highway, 2015, 35(4), 285(in Chinese).
邹茗地,唐亮,李成君,等. 中外公路, 2015, 35(4),285.
43 Lu W Y. Applied Mechanics and Materials, 2014, 638,333.
44 Schätzer M, Fries T P. Applied Mathematical Modelling, 2020, 78,863.
45 Hu S W, Mi Z X. Journal of Hydraulic Engineering, 2014, 45(S1),51(in Chinese).
胡少伟,米正祥. 水利学报, 2014, 45(S1),51.
46 Qing L B, Liu H H, Luo D N, et al. Journal of Hebei University of Technology, 2015, 44(1), 89(in Chinese).
卿龙邦,刘换换,罗丹旎,等. 河北工业大学学报, 2015, 44(1), 89.
47 Skar A, Poulsen P N, Olesen J F. Engineering Fracture Mechanics, 2017, 181,38.
48 Ray S, Jeshna C C, Gupta N. Engineering Fracture Mechanics, 2020, 223,106735.
49 Gaedicke C, Roesler J, Shah S P. International Journal of Fatigue, 2009, 31(8),1309.
50 Brake N A, Chatti K. Engineering Fracture Mechanics, 2013, 109,169.
51 Bhowmik S, Ray S. Engineering Fracture Mechanics, 2018, 191,365.
52 Sun X X, Guo X M, Guo L, et al. International Journal of Computatio-nal Methods, 2020, 17(1), 1844007.
53 Simon K M, Kishen J M C. International Journal of Fatigue, 2017, 98, 1.
54 Bang D J, Ince A, Noban M. International Journal of Fatigue, 2019, 128,105182.
55 Javanmardi M, Maheri M R. Finite Elements in Analysis and Design, 2019, 165,1.
[1] 石妍, 李家正, 李杨, 韩炜. 混凝土表面热喷涂陶瓷防护涂层的可行性试验研究[J]. 材料导报, 2021, 35(Z1): 238-241.
[2] 李崇智, 王梦宇, 牛振山. 渗透结晶型表面防护剂对混凝土耐久性的影响[J]. 材料导报, 2021, 35(Z1): 247-250.
[3] 代金芯, 石宵爽, 王清远, 张红恩, 栾晨晨, 张宽裕, 杨富花. 多因素对再生复合掺料基地聚物混凝土抗压强度的影响[J]. 材料导报, 2021, 35(9): 9077-9082.
[4] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[5] 牛建刚, 许文明, 梁剑. 受压区局部约束塑钢纤维轻骨料混凝土梁的抗弯性能[J]. 材料导报, 2021, 35(8): 8056-8063.
[6] 陈宗平, 周济, 王成, 苏炜炜. 高温喷水冷却后圆钢管再生混凝土短柱轴压性能试验及剩余承载力评估[J]. 材料导报, 2021, 35(7): 7033-7041.
[7] 杨世玉, 赵人达, 曾宪帅, 贾文涛, 靳贺松, 李福海. 用自然纤维增强地聚物材料:综述[J]. 材料导报, 2021, 35(7): 7107-7113.
[8] 刘益良, 苏幼坡, 殷尧, 赵江山, 王硕, 莫宗云. 膨润土改性胶凝材料的研究进展[J]. 材料导报, 2021, 35(5): 5040-5052.
[9] 陈新明, 史玉良, 焦华喆, 靳翔飞, 吴亚闯, 谭毅. 基于搜索锥算法的纤维分布特征及对BFRC的增强机制[J]. 材料导报, 2021, 35(4): 4061-4066.
[10] 张戎令, 郝兆峰, 王起才, 马丽娜, 吕文达, 李文波. 核心混凝土缺陷对钢管混凝土构件徐变影响规律及预测模型研究[J]. 材料导报, 2021, 35(4): 4099-4104.
[11] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[12] 王尚伟, 朱海堂, 王博, 寇磊. 混凝土配合比优化设计的紧密堆积理论综述[J]. 材料导报, 2021, 35(3): 3085-3091.
[13] 孙国文, 王朋硕, 张营, 闫娜. 水下不分散混凝土性能的研究进展[J]. 材料导报, 2021, 35(3): 3092-3103.
[14] 钱珊珊, 姚燕, 王子明, 崔素萍, 刘晓, 郑春扬. 降低高强混凝土黏度的减水剂制备与机理研究[J]. 材料导报, 2021, 35(2): 2046-2051.
[15] 陈宇良, 姜锐, 陈宗平, 刘杰. 直剪状态下再生混凝土的变形性能及损伤分析[J]. 材料导报, 2021, 35(19): 19015-19021.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed