Please wait a minute...
材料导报  2021, Vol. 35 Issue (5): 5040-5052    https://doi.org/10.11896/cldb.19090070
  材料与可持续发展(四)——材料再制造与废弃物料资源化利用* |
膨润土改性胶凝材料的研究进展
刘益良1,2, 苏幼坡1, 殷尧3, 赵江山1, 王硕1, 莫宗云2
1 华北理工大学矿业工程学院,唐山 063210
2 北华航天工业学院建筑工程学院,廊坊 065000
3 西安交通大学人居环境与建筑工程学院,西安 710049
Research Progress of Bentonite Modified Cementitious Materials
LIU Yiliang1,2, SU Youpo1, YIN Yao3, ZHAO Jiangshan1, WANG Shuo1, MO Zongyun2
1 School of Mining Engineering, North China University of Science and Technology, Tangshan 063210, China
2 Department of Architectural Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China
3 School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China
下载:  全 文 ( PDF ) ( 7144KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水泥、石灰等传统胶凝材料在生产、施工、性能方面存在许多不足,如生产能耗大、成本高,造成环境压力;施工过程易泌水、离析;硬化后易产生裂缝,且吸湿保温性不良。
膨润土是一种常见的工业粘土,属于天然火山灰质材料,其由于独特的矿物结构、结晶化学性质,具有阳离子交换性、膨胀性、触变性、稳定性、可塑性、粘结性、吸附性、分散性。膨润土改性水泥、石灰等胶凝材料在土木工程、岩土工程、水利工程、矿山充填等领域的应用越来越多。然而,由于膨润土具有多种优越性能,现有研究一般仅关注膨润土的某一种性能,研究范围广、成果差异大,没有总结其规律性。
国内外学者对膨润土改性胶凝材料的研究主要集中于:(1)对天然膨润土本身进行改性,扩大膨润土利用范围;(2)膨润土经热处理后作为辅助胶凝材料,在生产水泥过程中掺入;(3)将膨润土掺入到各种胶凝材料砂浆、混凝土中,以改善它们的工作性能、力学性能、耐久性能;(4)将膨润土与相关胶凝材料混合,制备出性能良好的陶粒等烧结材料、相变保温材料、吸附固化重金属材料等功能性建筑材料。
为明确膨润土改性胶凝材料的研究现状,本文归纳了膨润土改性胶凝材料的研究进展,分别对膨润土的火山灰活性、膨润土改性胶凝材料的性能及机理、膨润土改性胶凝材料的应用等进行介绍,分析了膨润土改性胶凝材料研究面临的问题并展望其前景,以期为膨润土改性出性能优良和环境友好的胶凝材料提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘益良
苏幼坡
殷尧
赵江山
王硕
莫宗云
关键词:  膨润土  胶凝材料  火山灰活性  塑性混凝土  相变材料    
Abstract: There are many deficiencies in production, construction and performance of cement, lime and other traditional cementitious materials. Large energy consumption and high cost of production cause environmental pressure. It is easy to bleed and segregate during the construction, cracks are easy to occur after hardening, and the moisture absorption and thermal insulation are poor.
Bentonite is a kind of common industrial clay, which belongs to natural pozzolanic material. Due to its unique mineral structure and crystalline chemical properties, it has cation exchange, expansibility, thixotropy, stability, plasticity, cohesiveness, adsorption, and dispersion. Bentonite is widely used in civil engineering, geotechnical engineering, water conservancy engineering, mine filling and other fields as modified cement, lime and other cementitious materials. However, due to bentonite has a variety of superior properties, the existing research only focuses on one kind of properties of bentonite. The research scope is wide and the results vary widely, and its regularity has not been summarized.
At present, the research on bentonite modified cementitious materials at home and abroad mainly focuses on: (1) modifying natural bentonite itself to expand the use of bentonite; (2) using bentonite as supplementary cementitious material after heat treatment mix in the production of cement; (3) mixing bentonite into various cementitious materials mortar and concrete. In the condensate, the working performance, durable performance, and mechanical properties of mortar and concrete are improved; (4) mixing bentonite with related cementitious materials to prepare functional building materials with good properties, such as ceramsite and other sintering materials, phase change heat preservation materials, adsorption and solidification of heavy metal materials.
In order to clarify the research status of bentonite modified cementitious materials. This review offers a retrospection of the research efforts concerning the bentonite modified cementitious materials, and provides elaborate descriptions about the pozzolanic activity of bentonite, the properties and mechanism of bentonite modified cementitious materials, and the application of bentonite modified cementitious materials. We then pay attention to the problems confronting the current state-of-the-art bentonite modified cementitious materials and look forward to its future. We have confidence that the bentonite has a bright future in the development and innovation of excellent properties and environmental-friendly cementitious materials.
Key words:  bentonite    cementitious materials    pozzolanic activity    plastic concrete    phase change material
               出版日期:  2021-03-10      发布日期:  2021-03-12
ZTFLH:  TD985  
  TU502  
基金资助: 国家自然科学基金(51578029);河北省教育厅在读研究生创新能力培养资助项目(CXZZBS 2019129);廊坊市科技支撑计划项目(2019011007;2018011050);华北理工大学研究生创新项目(2019B12)
通讯作者:  suyoupo@126.com   
作者简介:  刘益良,北华航天工业学院建筑工程学院讲师,2013年4月毕业于河北联合大学,获工学硕士学位,现为华北理工大学矿业工程学院博士研究生,在苏幼坡教授的指导下进行研究。目前主要研究领域为固体废弃物资源化和特种功能水泥基材料。
苏幼坡,华北理工大学,教授,博士研究生导师,全国抗震防灾规划和抗震设防区划审查委员会委员。长期从事矿业城市与工程安全减灾、高性能混凝土等相关领域的研究。主持和参与国家自然科学基金项目6项,国家科技支撑计划课题4项、获省部级科技进步奖6项,出版《城镇生命线系统震后恢复的基础理论与实践》等学术专著7部,主编国家标准《城镇防灾避难场所设计规范》1部,参编国家标准3部,发表学术论文200余篇。
引用本文:    
刘益良, 苏幼坡, 殷尧, 赵江山, 王硕, 莫宗云. 膨润土改性胶凝材料的研究进展[J]. 材料导报, 2021, 35(5): 5040-5052.
LIU Yiliang, SU Youpo, YIN Yao, ZHAO Jiangshan, WANG Shuo, MO Zongyun. Research Progress of Bentonite Modified Cementitious Materials. Materials Reports, 2021, 35(5): 5040-5052.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090070  或          http://www.mater-rep.com/CN/Y2021/V35/I5/5040
1 Mirza J, Riaz M, Naseer A, et al. Applied Clay Science,2009,45(4),220.
2 Zhou T T, Zhang X D, Liu K S, et al. Conservation and Utilization of Mineral Resources,2017(3),106(in Chinese).
周婷婷,张晓丹,刘克爽,等.矿产保护与利用,2017(3),106.
3 Xue N. Study on adsorption and photocatalytic properties of composite modified bentonite. Master’s Thesis, University of Jinan, China,2018(in Chinese).
薛妮.复合改性膨润土的吸附及光催化性能研究.硕士学位论文,济南大学,2018.
4 Sarl A, Alkan C, Biçer A, et al. International Journal of Energy Research,2014,38(11),1478.
5 Brtanova A, Melichova Z, Komadel P. Ceram Silik,2012,56(1),55.
6 Andrejkovicova S, Rocha F, Janotka I, et al. Geotextiles and Geomembranes,2008,26(5),436.
7 Andrejkovicova S, Pentrak M, Komadel P. Geologica Carpathica,2010,61(2),163.
8 Dong C Y, Sun Z P, Weng G W, et al. New Building Materials,2013,40(11),8(in Chinese).
董超颖,孙振平,翁光文,等.新型建筑材料,2013,40(11),8.
9 Mesboua N, Benyounes K, Benmounah A. Cogent Engineering,2018,5(1),1446252.
10 Modabberi S, Namayandeh A, Setti M, et al. Applied Clay Science,2019,168,56.
11 Gungor N, Karaoglan S. Materials Letters,2001,48(3-4),168.
12 Li C M. Research on the swelling inhibition mechanism and modification experiment of pisha sanston montmorillonite. Ph.D. Thesis, Dalian University of Technology, China,2016(in Chinese).
李长明.砒砂岩中蒙脱石膨胀抑制机理及改性试验研究.博士学位论文,大连理工大学,2016.
13 Li C M, Song L S, Yao W Y, et al. Yellow River,2018,40(6),96(in Chinese).
李长明,宋丽莎,姚文艺,等.人民黄河,2018,40(6),96.
14 Jiang G L, Zhang P P. Processing and application of bentonite, Chemical Industry Press China,2005(in Chinese).
姜桂兰,张培萍.膨润土加工与应用,化学工业出版社,2005.
15 He C, Osbaeck B, Makovicky E. Cement and Concrete Research,1995,25(8),1691.
16 Sun Z D. Journal of Shanghai Institute of Building Materials,1989(4),407(in Chinese).
孙忠德.上海建材学院学报,1989(4),407.
17 Ding G Q, Jiang L H, Zhang J Y. Journal of Wuhan University of Technology,2012,34(4),20(in Chinese).
丁国庆,蒋林华,张继尹.武汉理工大学学报,2012,34(4),20.
18 Wong L S, Hashim R, Ali F. Engineering Geology,2013,152(1),56.
19 Fernandez R, Martirena F, Scrivener K L. Cement and Concrete Research,2011,41(1),113.
20 Garg N, Skibsted J. Cement and Concrete Research,2016,79,101.
21 De Windt L, Deneele D, Maubec N. Cement and Concrete Research,2014,59,34.
22 Zhou D, Wang R, Tyrer M, et al. Journal of Cleaner Production,2017,168,1180.
23 Said-Mansour M, Kadri E H, Kenai S, et al. Construction and Building Materials,2011,25(5),2275.
24 Tironi A, Trezza M A, Scian A N, et al. Construction and Building Materials,2012,28(1),276.
25 Tironi A, Trezza M A, Scian A N, et al. Cement and Concrete Compo-sites,2013,37,319.
26 Berriel S S, Favier A, Domínguez E R, et al. Journal of Cleaner Production,2016,124,361.
27 Nehdi M L. Construction and Building Materials,2014,51,372.
28 Mechti W, Mnif T, Chaabouni M, et al. Construction and Building Materials,2014,50,609.
29 Rumer A, Ludwig H M, Schellhorn M, et al. Applied Clay Science,2019,168,36.
30 Lothenbach B, Scrivener K, Hooton R D. Cement and Concrete Research,2011,41(12),1244.
31 Yuksel A, Salih Ugur B, Serif T. Journal of Hazardous Materials,2006,131(1-3),126.
32 Tironi A, Trezza M, Irassar E, et al. Revista De La Construccion,2012,11(1),44.
33 Taylor-Lange S C, Lamon E L, Riding K A, et al. Applied Clay Science,2015,108,84.
34 Wei J, Gencturk B. Cement and Concrete Research,2019,123,105772.
35 Wei J, Gencturk B, Jain A, et al. Applied Clay Science,2019,182,105257.
36 Wei J, Meyer C. Corrosion Science,2017,120,42.
37 Kim B, Kim Y. Marine Georesources & Geotechnology,2017,35(3),414.
38 Carvalho D, Rocha A, Gomez-Gesteira M, et al. Remote Sensing of Environment,2013,137,173.
39 Andrejkovicova S, Alves C, Velosa A, et al. Cement and Concrete Composites,2015,60,99.
40 Sun N, Lin Y S. Small Hydro Power,2016 (5),53(in Chinese).
孙宁,林云生.小水电,2016(5),53.
41 Perret S, Palardy D, Ballivy G. Materials Journal,2000,97(4),472.
42 Huang W H. Cement and Concrete Research,1997,27(3),395.
43 Ahmad S, Barbhuiya S A, Elahi A, et al. Clay Minerals,2011,46(1),85.
44 Targan S, Olgun A, Erdogan Y, et al. Cement and Concrete Research,2002,32(10),1551.
45 Sha F, Li S, Liu R, et al. Construction and Building Materials,2018,161,282.
46 Gao D Y, Yan K B, Hu L M, et al. Journal of Hydroelectric Engineering,2009,28(3),112(in Chinese).
高丹盈,严克兵,胡良明,等.水力发电学报,2009,28(3),112.
47 Huang J C. Science and Technology Innovation Herald,2014,11(14),50(in Chinese).
黄建超.科技创新导报,2014,11(14),50.
48 Ding G Q, Jiang L H, Zhu H Q, et al. Advances in Science and Technology of Water Resources,2011,31(2),34(in Chinese).
丁国庆,蒋林华,储洪强,等.水利水电科技进展,2011,31(2),34.
49 Huang L. Laboratory researches on mixing proportion of cement-bentonite slurry cutoff wall. Master’s Thesis, Tongji University, China,2008(in Chinese).
黄亮.水泥—膨润土泥浆垂直防渗墙室内配合比试验研究.硕士学位论文,同济大学,2008.
50 Kazemian S, Ghareh S, Torkanloo L. Procedia Engineering,2016,145,1080.
51 Amlashi A T, Abdollahi S M, Goodarzi S, et al. Journal of Cleaner Production,2019,230,1197.
52 Xu W F, Rao Y Z, Li S H, et al. Gold Science and Technology,2019,27(3),433(in Chinese).
徐文峰,饶运章,李尚辉,等.黄金科学技术,2019,27(3),433.
53 Man X, Haque M A, Chen B. Construction and Building Materials,2019,227,116656.
54 Memon S A, Arsalan R, Khan S, et al. Construction and Building Materials,2012,30,237.
55 Lima-Guerra D J, Mello I, Resende R, et al. International Journal of Concrete Structures and Materials,2014,8(1),15.
56 Karunarathne V K, Paul S C, Šavija B. Materials,2019,12(16),2622.
57 Zhuang Y Z, Chen C Y, Ji T. Construction and Building Materials,2013,46,13.
58 Cao W, Wang Y, Sun L, et al. Ecological Engineering,2016,88,77.
59 Fan L, Zhang Z, Yu Y, et al. Construction and Building Materials,2017,153,423.
60 Zhang X H, Wang L Y, Ma X F, et al. Non-Metallic Mines,2013,36(5),33(in Chinese).
张雪华,王利媛,马晓峰,等.非金属矿,2013,36(5),33.
61 Li X G, You B S, Gao R T, et al. Bulletin of the Chinese Ceramic Society,2019,38(1),294(in Chinese).
李晓光,尤碧施,高睿桐,等.硅酸盐通报,2019,38(1),294.
62 Li Y, Meng F T, Wang P, et al. Journal of Synthetic Crystals,2018,47(8),1554(in Chinese).
李杨,孟凡涛,王鹏,等.人工晶体学报,2018,47(8),1554.
63 Liu J W, Yuan H T, Du Y F, et al. Industrial Water & Wastewater,2018,49(6),50(in Chinese).
刘继伟,袁合涛,杜玉凤,等.工业用水与废水,2018,49(6),50.
64 Du B, Liu F T, Zhang M X, et al. Shandong Ceramics,2013,36(2),8(in Chinese).
杜斌,刘福田,张铭霞,等.山东陶瓷,2013,36(2),8.
65 Chen Y, Jiang Q H, Xin J W, et al. Journal of Materials Engineering,2019(7),1(in Chinese).
陈颖,姜庆辉,辛集武,等.材料工程,2019(7),1.
66 Said M A, Hassan H. Energy and Buildings,2018,173,353.
67 Oliver A. Energy and Buildings,2012,48,1.
68 Sarl A. Energy Conversion and Management,2016,117,132.
69 Jeong S G, Jeon J, Cha J, et al. Energy and Buildings,2013,62,190.
70 Chen C, Guo H, Liu Y, et al. Energy and Buildings,2008,40(5),882.
71 Zhang D, Li Z, Zhou J, et al. Cement and Concrete Research,2004,34(6),927.
72 Xie Y, Li J, Lu Z, et al. Construction and Building Materials,2019,195,505.
73 Xie Y, Li J, Lu Z, et al. Construction and Building Materials,2018,179,207.
74 Jiang J, Lu Z, Li J, et al. Construction and Building Materials,2019,199,72.
75 Abu-Jdayil B, Al-Malah K, Sawalha R. Journal of Reinforced Plastics and Composites,2002,21(17),1597.
76 Abu-Jdayil B, Al-Malah K. Journal of Reinforced Plastics and Composites,2008,27(14),1559.
77 Abu-Jdayil B, Mourad A H, Hittini W, et al. Construction and Building Materials,2019,214,709.
78 Jiang J, Lu Z, Li J, et al. Construction and Building Materials,2019,215,360.
79 Yu H Q. Preparation, characterization and adsorption properties of bentonite-based adsorbents. Ph.D. Thesis, Ocean University of China, China,2012(in Chinese).
于海琴.膨润土基吸附材料的制备、表征及其吸附性能研究.博士学位论文,中国海洋大学,2012.
80 Niu Y, Lu Z, Li J, et al. Materials Letters,2019,247,36.
81 Liu G, Wu L, Ye C, et al. Chemosphere,2019,228,656.
82 Kan L L, Zhu J, Tao Y C, et al. Journal of Water Resources and Water Engineering,2017,28(2),216(in Chinese).
阚黎黎,朱瑨,陶毅晨,等.水资源与水工程学报,2017,28(2),216.
83 Mao Y, Muhammad F, Yu L, et al. International Journal of Environmental Research and Public Health,2019,16(7),1121.
84 Yan M, Zeng G, Li X, et al. Environmental Science and Pollution Research,2017,24(1),892.
85 Katsioti M, Katsiotis N, Rouni G, et al. Cement and Concrete Composites,2008,30(10),1013.
86 Terzic A, Dordevic N, Mitric M, et al. Science of Sintering,2017,49(1),23.
87 Wang X J. Mine Construction Technology,2014,35(S1),108(in Chinese).
王学军.建井技术,2014,35(S1),108.
88 Yao Z H. Traffic Engineering and Technology for National Defence,2018,16(1),45(in Chinese).
姚智慧.国防交通工程与技术,2018,16(1),45.
89 Han X H, Liang W G, Zhang J G. Chinese Journal of Underground Space and Engineering,2015,11(3),788(in Chinese).
韩兴华,梁卫国,张建功.地下空间与工程学报,2015,11(3),788.
90 Hui X T, Zhang H F, Hou J. Coal Technology,2015,34(1),21(in Chinese).
惠兴田,张华峰,侯俊.煤炭技术,2015,34(1),21.
91 Klempa M, Malis J, Sancer J, et al. Inzynieria Mineralna,2018,20,321.
92 Hou C Q, Dong M S, Feng H P. Journal of Hefei University of Technology(Natural Science),2013,36(1),63(in Chinese).
侯超群,董满生,逄焕平.合肥工业大学学报(自然科学版),2013,36(1),63.
93 Hu Y H, Bai Y C, Xu H Y. Highway,2016,61(9),130(in Chinese).
胡聿涵,白玉川,徐海珏.公路,2016,61(9),130.
94 Zhang L Z. Mining Technology,2017,17(6),63(in Chinese).
张联志.采矿技术,2017,17(6),63.
95 Wu J, Feng M, Xu J, et al. Minerals,2018,8(9),407.
96 Li S H. Experimental study on filling characteristics of bentonite. Master’s Thesis, JiangXi University of Science and Technology, China,2018(in Chinese).
李尚辉.膨润土对充填特性的试验研究.硕士学位论文,江西理工大学,2018.
97 Zhang J G. Study on physical and mechanical characteristics of paste fil-ling material with swelling properties. Master’s Thesis, Taiyaun University of Technology, China,2014(in Chinese).
张建功.具有膨胀特性膏体充填材料的物理力学特性试验研究.硕士学位论文,太原理工大学,2014.
98 Singh P, Ghosh C N, Behera S K, et al. Arabian Journal of Geosciences,2019,12(15),462.
99 Liang J G, Li H W, Tian P C. Geotechnical Investigation & Surveying,2006(3),45(in Chinese).
梁金国,李华伟,田鹏成.工程勘察,2006(3),45.
100 Griffith W. U.S. patent, US1004419.1911.
101 Zhang G Z, Wang L, Sun D S. Bulletin of the Chinese Ceramic Society,2012,31(3),590(in Chinese).
张高展,王雷,孙道胜.硅酸盐通报,2012,31(3),590.
102 Cowling R. In: Sixth International Symposium on Mining with Backfill. Brisbane, Australia.1998,pp.3.
103 Zhang J G, Liang W G, Han J J, et al. Mining Research and Development,2015,35(1),15(in Chinese).
张建功,梁卫国,韩俊杰,等.矿业研究与开发,2015,35(1),15.
104 Siriwardane H J, Kannan R S S, Ziemkiewicz P F. Journal of Environmental Engineering,2003,129(10),910.
105 Head W J, Ziemkiewicz P F, Gray D D, et al. Disposal of Fluidized Bed Combustion Ash in an Underground Mine to Control Acid Mine Drainage and Subsidence, Topical Progress Report for Phase 1. Submitted to U.S. Department of Energy. Morgantown: West Virginia University.1996.
106 Gray D D, Reddy T P, Black D C, et al. Filling abandoned mines with fluidized bed combustion ash grout. ASTM International, USA,1998.
107 Yang Y L, Guo Z P, Zhang L M, et al. Journal of Shandong Mining Institute,1997(4),42(in Chinese).
杨佑灵,郭忠平,张利民,等.山东矿业学院学报,1997(4),42.
108 Domone, P L J, Stephan A J. Structural grouts. CRC Press, UK,2002.
109 Bradbury M H, Baeyens B. Journal of Contaminant Hydrology,2003,61(1-4),329.
110 Kumar S, Burrus N. Soil & Sediment Contamination: An International Journal,2005,14(6),505.
111 Zhao N, Wang S, Quan X, et al. KSCE Journal of Civil Engineering,2019,23(6),2628.
112 Ghanizadeh A R, Abbaslou H, Amlashi A T, et al. Frontiers of Structu-ral and Civil Engineering,2019,13(1),215.
113 Mahboubi A, Ajorloo A. Cement and Concrete Research,2005,35(2),412.
114 Abbaslou H, Ghanizadeh A R, Amlashi A T. Construction and Building Materials,2016,124,1165.
115 Zhang P, Guan Q, Li Q. Research Journal of Applied Sciences, Enginee-ring and Technology,2013,5(4),1317.
116 Wang Q P, Wang H, Min F F. Journal of Functional Materials,2015,46(23),23042(in Chinese).
王庆平,王辉,闵凡飞.功能材料,2015,46(23),23042.
117 Isaia G C, Gastaldini A L G, Moraes R. Cement and Concrete Compo-sites,2003,25(1),69.
118 Ma C F. Research on mechanical property of bentonite-PVA fiber cementitious composite. Master’s Thesis, Shenyang University of Technology, China,2019(in Chinese).
马晨峰.膨润土-PVA纤维水泥基复合材料力学性能研究.硕士学位论文,沈阳工业大学,2019.
119 Bekhiti M, Trouzine H, Rabehi M. Construction and Building Materials,2019,208,304.
120 Kumar S, Dutta R K. Jordan Journal of Civil Engineering,2014,159(3147),1.
[1] 吴韶飞, 闫霆, 蒯子函, 潘卫国. 高各向异性十六酸/膨胀石墨定形相变储热材料的性能[J]. 材料导报, 2021, 35(4): 4186-4193.
[2] 金宇, 冯伟鹏, 董志君, ManuelMonasterio, 李明雨. 辅助胶凝材料玻璃体结构与胶凝活性的研究进展[J]. 材料导报, 2021, 35(3): 3016-3020.
[3] 解志益, 周涵, 李庆超, 李东旭. 纳米硅溶胶的制备及在水泥基材料中的应用研究进展[J]. 材料导报, 2020, 34(Z2): 160-163.
[4] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[5] 王成君, 段志英, 苏琼, 王爱军, 孟淑娟. 以多级孔碳为支撑基体的复合相变材料在光热转换与存储方面的研究进展[J]. 材料导报, 2020, 34(23): 23074-23080.
[6] 刘涛, 郭乃胜, 谭忆秋, 尤占平, 金鑫. 路用相变材料研究现状和发展趋势[J]. 材料导报, 2020, 34(23): 23179-23189.
[7] 黄国富, 刘坤, 王忠凯, 宋蓉蓉, 朱颖, 汤睿, 张寒冰, 童张法. SDBS诱导磁性花球状SDBS/BiOBr-MB的制备及其增强的可见光催化性能[J]. 材料导报, 2020, 34(22): 22024-22029.
[8] 朱思贤, 邹得球, 鲍家明, 贺瑞军, 吴锦飞, 张国彤. 相变材料的过冷特性及调控研究进展[J]. 材料导报, 2020, 34(19): 19075-19082.
[9] 陈文华, 黄志义. 集料和纤维掺量对LTCC力学性能和微观结构的影响[J]. 材料导报, 2020, 34(18): 18049-18055.
[10] 梅源, 田新宇, 胡长明, 刘建国, 杨云飞, 朱军. 膨润土改性砂土工程性质及其在盾构施工中的应用[J]. 材料导报, 2020, 34(14): 14087-14092.
[11] 王毓, 赵君, 任俊鹏, 李本秀, 周进康, 李小平. 温敏互穿网络水凝胶/改性膨润土复合吸水保水材料的制备及表征[J]. 材料导报, 2020, 34(12): 12178-12184.
[12] 陈丽萍, 蔡亮, 李光华, 周强. 基于CiteSpace的储热技术研究进展与趋势[J]. 材料导报, 2019, 33(9): 1505-1511.
[13] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[14] 荣辉, 魏冠奇, 张磊, 张颖, 徐蕊, 宁彩珍, 王雪平. 微生物胶凝材料固结垃圾焚烧飞灰效果及机制[J]. 材料导报, 2019, 33(22): 3757-3761.
[15] 王博, 朱孝钦, 胡劲, 常静华, 陈洋, 史杰. 利用纳米石墨强化正癸酸-十四醇复合相变材料的导热性能[J]. 材料导报, 2019, 33(22): 3815-3819.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed