Please wait a minute...
材料导报  2020, Vol. 34 Issue (19): 19075-19082    https://doi.org/10.11896/cldb.19080094
  无机非金属及其复合材料 |
相变材料的过冷特性及调控研究进展
朱思贤, 邹得球, 鲍家明, 贺瑞军, 吴锦飞, 张国彤
宁波大学海运学院,宁波 315211
Supercooling Characteristics and Its Adjustment of Phase Change Material:
a Review
ZHU Sixian, ZOU Deqiu, BAO Jiaming, HE Ruijun, WU Jinfei, ZHANG Guotong
Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China
下载:  全 文 ( PDF ) ( 2269KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 相变材料(Phase change material,PCM)由于具有较大的潜热值、合适的相变温度及稳定的性质,在储热(冷)领域具有广阔的应用前景。但是,相变材料通常存在过冷现象,而过冷会降低相变材料的结晶温度,影响相变材料的储热性能和放热温度区间。
在相变材料中添加成核剂是目前应用最为广泛的降低过冷度的方法。近年来,学者对成核剂的研究主要集中在针对不同的相变材料,筛选出高效、稳定性好且添加比例小的成核剂。此外,采用外加扰动的方式也可以降低相变材料的过冷度,如机械冲击、超声辐射或电场等,这一方法虽然出现较早,也同样具有良好的降低过冷度的效果,但因为需要额外的设备支持,所以目前的研究和应用较少。近年来,研究者通过改变相关参数,如选择合适的超声频率、电场强度等,来达到更好的降低相变材料过冷度的效果。微胶囊相变材料早期采用封装前添加成核剂的方式降低过冷度,但这会降低其储热能力,近年来的研究工作通过控制微胶囊尺寸和壁面改性这两种方式降低微胶囊的过冷度,它可以在不降低储热能力的情况下降低过冷度,因而具有较好的前景。
本文介绍了相变材料的过冷特性,阐述了冷却速率、壁面效应、尺寸效应等因素对过冷特性的影响,分析了降低相变材料过冷度的方法。最后指出了相变材料过冷特性研究存在的问题,提出了在相变材料过冷度预测、过冷度影响因素的作用机理和改进降低过冷度方法上需进一步研究。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱思贤
邹得球
鲍家明
贺瑞军
吴锦飞
张国彤
关键词:  相变  相变材料  过冷  结晶  成核剂  热力学性质    
Abstract: Phase change material (PCM) has a wide application prospect in the field of heat storage (cold) due to its large latent heat value, suitable phase transition temperature, and stable properties. However, phase-change materials usually have a phenomenon of supercooling, which affects the release of latent heat when the phase change material stores heat.
The addition of nucleating agents to phase change materials is the mostcommonly used method to reduce the degree of supercooling, at pre-sent. In the past years, researchers in this field have focused on screening nucleating agents with higher efficiency, better stability and lower specific gravity for different phase change materials. In addition, the method of plus disturbance can similarly reduce the supercooling degree of phase change materials, such as mechanical shock, ultrasonic radiation or electric field, which appears earlier and reduced the degree of supercooling. Considering the requirement for additional equipment support, there are few researches and applications at present. Recently, it has been shown that selecting the relevant suitable parameters, such as ultrasonic frequency and electric field, can substantially enhance the supercooling effect of phase change materials.
The microcapsule phase change material initially reduces the degree of supercooling by adding a nucleating agent before encapsulation, along with the side effect of weakening its heat storage capacity. Researchers began to concentrate on controlling the size of the microcapsule and optimizing the structure of the microcapsule shell in recent years, with a useful application prospect, which can decrease the degree of supercooling and maintain the heat storage capacity.
Supercooling characteristics of phase change materialsare introduced in this paper firstly. Then, the effects of cooling rate, shell surface and ambient temperature on the supercooling characteristics are clarified in detail. Following, different methods about reducing the degree of supercooling are allowed analyzing the advantages and disadvantages. Finally, the problems existing in the study of supercooling characteristics of phase change materials are emphasized. It is suggested that further researches are needed in establish a supercooling prediction model,actors affecting supercooling and its mechanism and improved supercooling reduction method.
Key words:  phase change    phase change material    supercooling    crystallization    nucleating agent    thermodynamic properties
                    发布日期:  2020-11-05
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51976092);浙江省自然科学基金(LY17E060001);宁波市自然科学基金(2019A610012);浙江省大学生科技创新活动计划(2018R405042)
通讯作者:  zoudeqiu@nbu.edu.cn   
作者简介:  朱思贤,2018年6月毕业于南京农业大学,获得工学学士学位。现为宁波大学海运学院硕士研究生,主要研究领域为相变材料。
邹得球,中国科学院广州能源研究所博士。现为宁波大学海运学院副教授,主要研究方向为相变材料及其性能调控。
引用本文:    
朱思贤, 邹得球, 鲍家明, 贺瑞军, 吴锦飞, 张国彤. 相变材料的过冷特性及调控研究进展[J]. 材料导报, 2020, 34(19): 19075-19082.
ZHU Sixian, ZOU Deqiu, BAO Jiaming, HE Ruijun, WU Jinfei, ZHANG Guotong. Supercooling Characteristics and Its Adjustment of Phase Change Material:
a Review. Materials Reports, 2020, 34(19): 19075-19082.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080094  或          http://www.mater-rep.com/CN/Y2020/V34/I19/19075
1 Beaupere N, Soupremanien U, Zalewski L. Thermochimica Acta,2018,670,184.
2 Dal Magro F, Savino S, Meneghetti A, et al. Energy,2017,137,1107.
3 Summers E K, Antar M A, John H L V. Solar Energy,2012,86(11),3417.
4 Xing J, Hu H, Xing S, et al. Journal of Thermal Analysis & Calorimetry,2018,1.
5 Sabbah R, Kizilel R, Selman J R, et al. Journal of Power Sources,2015,182(2),630.
6 Ushak S, Gutierrez A, Galleguillos H, et al. Solar Energy Materials & Solar Cells,2015,132(132),385.
7 Hu H, Jin X, Zhang X. Energy Procedia,2017,105,4321.
8 Zeng J L, Zhou L, Zhang Y F, et al. Journal of Thermal Analysis & Calorimetry,2017,129(3),1291.
9 Konuklu Y. International Journal of Energy Research,2014,38(15),2019.
10 Zhang Y P, Jiang Y, Jiang Y. Measurement Science and Technology,1999,10(3),201.
11 Li X, Li H, Zhang L, et al. IOP Conference Series, Materials Science and Engineering,2018,301,12044.
12 Sari A. Energy Conversion and Management,2012,64,68.
13 Zhang Shuanglong. A study on the exothermal characteristics of typical phase change materials in the partially-melted state. Master's Thesis, Southeast University, China,2015(in Chinese).
张双龙.典型相变材料部分熔化时放热特性研究.硕士学位论文,东南大学,2015.
14 Hidaka H, Yamazaki M, Yabe M, et al. Kagaku Kogaku Ronbunshu,2004,30(4),552.
15 Seppala A, Merilainen A, Wikstrom L, et al. Experimental Thermal and Fluid Science,2010,34(5),523.
16 Carpentier L, Desprez S, Descamps M. Journal of Thermal Analysis and Calorimetry,2003,73(2),577.
17 Paul A, Shi L, Bielawski C W. Energy Conversion and Management,2015,103(C),139.
18 Cai Wei. Experimental study on the energy storage performance of compo-site phase change materials. Master's Thesis, Suzhou University of Science and Technology, China,2016(in Chinese).
蔡伟.复合相变材料储能特性实验研究.硕士学位论文,苏州科技大学,2016.
19 Turnbull D, Cech R E. Journal of Applied Physics,1950,21(8),804.
20 Yu H, Nan Z, Yuan Y, et al. Journal of Thermal Analysis & Calorimetry,2018,133(2),859.
21 Xu Y L, Liu D. Journal of Materials Engineering,2006(z1),218(in Chinese).
徐云龙,刘栋.材料工程,2006(z1),218.
22 Nagano K, Mochida T, Takeda S, et al. Applied Thermal Engineering,2003,23(PII S1359-4311(02)00161-82),229.
23 Shamberger P J, Reid T. Journal of Chemical and Engineering Data,2012,57(5),1404.
24 Leng Congbin, Ji X, Luo X, et al. Journal of Materials Engineering,2017,45(1),58(in Chinese).
冷从斌,季旭,罗熙,等.材料工程,2017,45(1),58.
25 Chen A Y, Wang X Y, Cao X Z. Materials Review,2003(5),42(in Chinese).
陈爱英,汪学英,曹学增.材料导报,2003(5),42.
26 Pacák P. Kristall and Technik,1980,15(5),523.
27 Deng Y, Li J, Deng Y, et al. ACS Sustainable Chemistry & Engineering,2018,6(5),6792.
28 Dancy E A. Solar Energy,1984,1(33),41.
29 Xiao Q, Yuan W, Li L, et al. Solar Energy Materials & Solar Cells,2018,179,S923861813.
30 Ma Y, Lei B, Liu Y, et al. Applied Thermal Engineering,2016,99,189.
31 Pilar R, Svoboda L, Honcova P, et al. Thermochimica Acta,2012,546,816.
32 Chen H S, Turnbull D. Acta Metallurgica,1967,16(3),369.
33 Sharma A, Tyagi V V, Chen C R, et al. Renewable & Sustainable Energy Reviews,2009,13(2),318.
34 Cingarapu S, Singh D, Timofeeva E V, et al. International Journal of Energy Research,2014,38(1),51.
35 Ma W H, Jian Z Y, Yan W. Journal of Xi'an Technological University,1999,19(2),137(in Chinese).
马卫红,坚增运,严文.西安工业大学学报,1999,19(2),137.
36 Kano M. Journal of Physics E,1989,22(11),907.
37 Keinänen M. Latent heat recovery from supercooled sodium acetate trihydrate using a brush heat exchanger. Master's Thesis, Helsinki University of Technology, Finland,2007.
38 Mollova A, Androsch R, Mileva D, et al. Macromolecules,2013,46(3),828.
39 Xiong Wenjia. Study on the effects of cooling rate and additives on supercooling degrees of hydrated salts. Master's Thesis, Lanzhou University of Technology, China,2014(in Chinese).
熊文嘉.冷却速度及添加物对水合盐过冷度的影响研究.硕士学位论文,兰州理工大学,2014.
40 Okawa S, Saito A, Suto H. International Journal of Refrigeration,2002,25(5),514.
41 Faucheux M, Muller G, Havet M, et al. International Journal of Refrigeration,2006,29(7),1218.
42 Schulli T U, Daudin R, Renaud G, et al. Nature,2010,464(7292),1174.
43 Günther E, Schmid T, Mehling H, et al. International Journal of Refrigeration,2010,33(8),1605.
44 Adachi T, Daudah D, Tanaka G. ISIJ International,2014,54(12),2790.
45 Telkes M. Arthritis Care & Research,1952,13(2),112.
46 Ushak S, Gutierrez A, Barreneche C, et al. Solar Energy Materials & Solar Cells,2016,157,1011.
47 Lane G A. Solar Energy Materials & Solar Cells,1992,27(2),135.
48 Han X C, Zhang X L, Hua W S, et al. Chemical Industry and Enginee-ring Progress,2018,37(7),2727(in Chinese).
韩兴超,章学来,华维三,等.化工进展,2018,37(7),2727.
49 Hua W S, Zhang X L,Ding J H, et al. Acta Energiae Solaris Sinica,2017,38(7),1755(in Chinese).
华维三,章学来,丁锦宏,等.太阳能学报,2017,38(7),1755.
50 Sutjahja I M, U S R A, Kurniati N, et al. Journal of Physics Conference Series,2016.
51 Hu P, Zhao P P, Jin Y, et al. Solar Energy,2014,102,91.
52 Wang W, Zhang X L, Han Z, et al. Chemical Engineering,2012,40(10),21(in Chinese).
王为,章学来,韩中,等.化学工程,2012,40(10),21.
53 Ryu H W, Woo S W, Shin B C, et al. Solar Energy Materials & Solar Cells,1992,27(2),161.
54 Deng Y, Ding Y F. Applied Chemical Industry,2018,47(3),534(in Chinese).
邓燕,丁云飞.应用化工,2018,47(3),534.
55 Xiang L, Yuan Z, Nian H, et al. Applied Thermal Engineering,2016,102,708.
56 Hu P, Lu D J, Fan X Y, et al. Solar Energy Materials & Solar Cells,2011,95(9),2645.
57 Cui W L, Yuan Y P, Sun L L, et al. Journal of Chemical Industry and Engineering,2016,67(S2),149(in Chinese).
崔文龙,袁艳平,孙亮亮,等.化工学报,2016,67(S2),149.
58 Hua W, Zhang X, Muthoka M J, et al. Materials,2018,11(6),1016.
59 Zhang X L, Ding J X, Luo X X, et al. Journal of Engineering Thermophysics,2014,35(12),2334(in Chinese).
章学来,李春蕾,陈旭东,等.工程热物理学报,2014,35(12),2334.
60 Zhang X L, Ding J X, Luo X X, et al. Journal of Refrigeration,2016,37(1),70(in Chinese).
章学来,丁锦宏,罗孝学,等.制冷学报,2016,37(1),70.
61 Zhang X X, Fan Y F, Tao X M, et al. Journal of Colloid and Interface Science,2005,281(2),299.
62 Fan Y F, Zhang X X, Wang X C, et al. Thermochimica Acta,2004,413(1),1.
63 Englmair G, Moser C, Furbo S, et al. Applied Energy,2018,221,522.
64 Günther E, Mehling H, Werner M. Journal of Physics D Applied Physics,2007,40(15),4636.
65 Sandnes B. American Journal of Physics,2008,76(6),546.
66 Hunt J D, Jackson K A. Journal of Applied Physics,1966,37(1),254.
67 Marcolli C. Scientific Reports,2017,7(1),16634.
68 Jordens J, Gielen B, Braeken L, et al. Chemical Engineering & Proces-sing Process Intensification,2014,84(84),38.
69 Lee J, Ashokkumar M, Kentish S E. Ultrasonics Sonochemistry,2014,21(1),60.
70 Liu Y, Liu Y, Hu P, et al. Microfluidics & Nanofluidics,2014,18(1),81.
71 Etsuko M, Masakazu T, Hideto H, et al. Ultrasonics Sonochemistry,2006,13(4),308.
72 Seo K, Suzuki S, Kinoshita T, et al. Chemical Engineering & Technology,2012,35(6),1013.
73 Saclier M, Peczalski R, Andrieu J, et al. Chemical Engineering Science,2010,65(10),3064.
74 Jankowski N R, Mccluskey F P. In: 14th International Heat Transfer Conference. Washington DC,2010,pp.409.
75 Kumano H, Hirata T, Mitsuishi K, et al. International Journal of Refrigeration,2012,35(5),1266.
76 Orlowska M, Havet M, Le-bail A. Food Research International,2009,42(7),879.
77 Chen Qiuyan. Effects of electrostatic field on freezing process of water and dilute solutions. Master's Thesis, South China University of Techno-logy, China,2017(in Chinese).
陈秋妍.静电场对去离子水和稀溶液冷冻过程的影响.硕士学位论文,华南理工大学,2017.
78 Adrjanowicz K, Paluch M, Richert R. Physical Chemistry Chemical Phy-sics,2018,20(2),925.
79 Feng J, Hang C, Tian Y, et al. Scientific Reports,2018,8(1),1775.
80 Yamagishi Y, Sugeno T, Ishige T, et al. In: Energy Conversion Engineering Conference, Proceedings of the 31st Intersociety. Washington DC,2002,pp.2077.
81 Li W, Zhang X X, Wang J P, et al. New Chemical Materials,2007(10),4(in Chinese).
李伟,张兴祥,王建平,等.化工新型材料,2007(10),4.
82 Zhao H Z, Zheng S W. Advanced Materials Research,2013,746,118.
83 Yuan Q, Williams R A, Biggs S. Colloids & Surfaces A Physicochemical & Engineering Aspects,2009,347(1),97.
84 Cao F, Bao Y. Applied Energy,2014,113(1),1512.
85 Park S, Lee Y, Yong S K, et al. Colloids & Surfaces A Physicochemical & Engineering Aspects,2014,450(1),46.
86 Xu D B, Song Q W, Wang J M, et al. Journal of Tianjin Polytechnic University,2011,30(4),15(in Chinese).
徐德彬,宋庆文,王进美.天津工业大学学报,2011,30(4),15.
87 He F, Wang X, Wu D. Renewable Energy,2015,74,689.
[1] 王梦宇, 李崇智, 牛振山. 渗透结晶型防护剂对混凝土防水抗蚀性能的影响[J]. 材料导报, 2020, 34(Z1): 185-188.
[2] 朱雪峰, 周瑜, 樊凯, 王柯. TC18钛合金固溶过程中黑斑组织的形成机理[J]. 材料导报, 2020, 34(Z1): 289-292.
[3] 李锐, 曾令碧, 刘腾, 王晓杰, 杨平安. 不同温度下纯Ni/NiTi合金的摩擦特性研究[J]. 材料导报, 2020, 34(Z1): 297-303.
[4] 赵光伟, 陈健, 丁翀, 方东, 叶永盛, 叶喜葱. 冷速与凝固路径对Al-Cu-Si合金相变储热性能的影响[J]. 材料导报, 2020, 34(Z1): 328-333.
[5] 郑铭达, 吴红庆, 左鹏鹏, 吴晓春. V对H13型压铸模具钢相变特性的影响[J]. 材料导报, 2020, 34(Z1): 440-443.
[6] 张朝磊, 胡佳丽, 李戬, 苗红生, 刘雅政. 胀断连杆用非调质钢C70S6的材料特性及组织性能控制[J]. 材料导报, 2020, 34(Z1): 444-447.
[7] 何承绪, 马光, 陈新, 杨富尧, 程灵, 杨勇杰, 胡卓超, 孟利. 低温薄规格取向硅钢初次再结晶组织对二次再结晶行为的影响[J]. 材料导报, 2020, 34(Z1): 457-461.
[8] 吴志昂, 郑晓平, 龚莉雯, 王璠, 杨子程, 张利, 包锦标. 发泡工艺及超临界二氧化碳诱导结晶作用对聚碳酸酯发泡行为的影响[J]. 材料导报, 2020, 34(8): 8200-8204.
[9] 林铁贵, 张玉芬. 晶格畸变对VO2相变温度的影响[J]. 材料导报, 2020, 34(6): 6057-6061.
[10] 韩丽青, 吴云胜, 刘状, 秦学智, 王常帅, 周兰章, 于宏, 陈亚军. 一种先进超超临界火电机组用Ni-Fe-Cr基高温合金的热变形行为[J]. 材料导报, 2020, 34(6): 6109-6113.
[11] 吕鹏, 陈亚楠, 关庆丰, 李姚君, 许亮, 丁佐军. 新型超超临界机组用叶片钢11Cr12Ni3Mo2VN的热变形行为[J]. 材料导报, 2020, 34(4): 4113-4117.
[12] 李启泉,李岩,马悦辉. 钛基高温形状记忆合金进展综述[J]. 材料导报, 2020, 34(3): 3142-3147.
[13] 徐允, 张兆春, 郭海波, 谢耀平. 铟-镧系元素(La,Ce,Pr和Nd)金属间化合物磁学和热力学性质的第一性原理计算[J]. 材料导报, 2020, 34(2): 2093-2099.
[14] 王佩祥, 冯秀娟, 朱易春, 蒋达华. 利用膨胀石墨改进十二水磷酸氢二钠复合相变材料的蓄热性能[J]. 材料导报, 2020, 34(18): 18044-18048.
[15] 陈会子, 黄健康, 刘世恩, 于晓全, 樊丁. Zr基大块金属玻璃与304L不锈钢脉冲激光焊接接头微观组织特性[J]. 材料导报, 2020, 34(16): 16100-16103.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed