Please wait a minute...
材料导报  2020, Vol. 34 Issue (3): 3142-3147    https://doi.org/10.11896/cldb.19030262
  金属与金属基复合材料 |
钛基高温形状记忆合金进展综述
李启泉1,李岩1,,马悦辉2
1 北京航空航天大学材料科学与工程学院,北京 100191
2 兰州西脉记忆合金有限公司,兰州 730010
Research Progress of Titanium-based High-temperature Shape Memory Alloy
LI Qiquan1,LI Yan1,,MA Yuehui2
1 School of Materials Science and Engineering,Beihang University,Beijing 100191,China
2 Lanzhou Seemine SMA Co. Ltd.,Lanzhou 730010,China
下载:  全 文 ( PDF ) ( 12798KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 形状记忆合金凭借其独特的形状记忆效应和超弹性成为了重要的金属智能材料,在航空航天、电子、汽车和医疗等领域展现出巨大的应用价值。二元近等原子比镍钛合金是最为成熟的形状记忆合金材料,但是镍钛合金难以在很高的温度环境下(>100 ℃,373 K)实现应用。以航空航天、核反应堆等为代表的高温服役环境迫切需要具有高相变温度(>373 K)且综合性能良好的形状记忆合金,因此,发展高温形状记忆合金是本领域面临的研究重点和难点。近年来,科研工作者们以新型钛基合金为研究对象,通过合金化元素设计,获得具有高马氏体相变温度的形状记忆材料,发展出Ti-Ta基、Ti-Zr基、Ti-Nb基、Ti-Mo基等新型高温形状记忆合金体系。在满足高温相变特性的基础上,这些合金体系体现出不同的性能特点,例如Ti-Ta基合金利用Ta元素有效抑制ω相的析出而提高合金塑性,Ti-Nb基合金具有良好的加工成型能力。此外,以Pd、Pt、Au等贵金属为合金化元素可以进一步提高材料的相变温度,加入Sn、Al、Ga等元素则可以适当降低相变温度,并改善材料的力学性能和功能特性。本文综述了Ti-Ta基、Ti-Zr基、Ti-Nb基、Ti-Mo基等主要钛基高温形状记忆合金体系的研究进展,着重分析了合金化元素对合金相变温度、形状记忆效应、力学性能的影响规律,对各类合金的性能优势及缺点进行了全面总结,提出了高温形状记忆合金研究中存在的问题和未来发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李启泉
李岩
马悦辉
关键词:  高温形状记忆合金  钛基合金  形状记忆效应  相变温度    
Abstract: Shape memory alloys have become important smart materials due to their unique shape memory effect and superelastic properties, showing great promising in aviation, aerospace, electronics, automotive and medical applications. The binary near-equiatomic nickel-titanium alloy is one of the most well-developed shape memory materials, but it is very difficult to be used at very high temperature (>100 ℃, 373 K). The high-temperature service environment represented by aviation, aerospace, nuclear reactors, etc. urgently requires shape memory alloy materials with high phase transformation temperature and good combined properties. Therefore, the development of high-temperature shape memory alloy has become a research focus and difficulty in this field. In recent years, researchers have used the new titanium-based alloys as research objects to obtain shape memory materials with high martensitic transformation temperature through the design of alloying elements, and developed new high-temperature shape memory alloy systems such as Ti-Ta based, Ti-Zr based, Ti-Nb based and Ti-Mo based alloys. On the basis of satisfying the high temperature phase transformation characteristics, these alloy systems exhibit different performance characteristics. For example, Ti-Ta based alloys can effectively inhibit the precipitation of ω phase by Ta element and improve the plasticity. Ti-Nb based alloys have good processing ability. In addition, the alloying elements such as Pd, Pt and Au can be used in alloys to further increase the phase transition temperature. The addition of elements such as Sn, Al, and Ga can appropriately lower the alloy transformation temperature and improve its mechanical properties and functional properties.
In this paper, the research progresses of several high-temperature shape memory alloy systems such as Ti-Ta based, Ti-Zr based, Ti-Nb based and Ti-Mo basedalloys are reviewed. The effects of alloying elements on phase transformation temperature, shape memory effect and mechanical properties of alloys are analyzed. This paper gives comprehensive summary of the performance advantages and defects of various alloys, and proposes the development direction of new high temperature shape memory alloy materials in the future.
Key words:  high-temperature shape memory alloy    Ti alloys    shape memory effect    phase transformation temperature
                    发布日期:  2020-01-03
ZTFLH:  TG146.2+3  
基金资助: 国家自然科学基金(51831006);工信部工业强基项目(TC150B5C0/03)
通讯作者:  liyan@buaa.edu.cn   
作者简介:  李启泉,2016年6月毕业于北京航空航天大学,获得工学学士学位。现为北京航空航天大学材料科学与工程学院博士研究生,在李岩教授的指导下进行研究。目前主要研究领域为钛基形状记忆合金;李岩,北京航空航天大学教授。2001年博士毕业于大连理工大学。主要研究方向为金属智能材料和生物医用材料。
引用本文:    
李启泉,李岩,马悦辉. 钛基高温形状记忆合金进展综述[J]. 材料导报, 2020, 34(3): 3142-3147.
LI Qiquan,LI Yan,MA Yuehui. Research Progress of Titanium-based High-temperature Shape Memory Alloy. Materials Reports, 2020, 34(3): 3142-3147.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030262  或          http://www.mater-rep.com/CN/Y2020/V34/I3/3142
1 Zhang X R. Journal of Aerospace Power, 1998(3),260. (in Chinese).
张学仁.航空动力学报, 1998(3),260.
2 Stebner A, Padula II S A, Noebe R D, et al.International Society for Optics and Photonics, 2008, 6928, 69280X.
3 Quackenbush T R, Carpenter B F, Boschitsch A H, et al.International Society for Optics and Photonics, 2008, 6930, 69300P.
4 Gore J, Bowles A, Maylin M, et al.International Society for Optics and Photonics, 2008, 6930, 69300R.
5 Duerig T W, Albrecht J, Gessinger G H. Journal of the Minerals, Metals & Materials Society, 1982, 34(12),14.
6 Zuo S G, Jin X J, Jin M J. Materials for Mechanical Engineering, 2014, 38(1),1 (in Chinese).
左舜贵, 金学军, 金明江.机械工程材料, 2014, 38(1),1.
7 Xue S C, Wang W, Wu D Z, et al. Materials Review, 2011(s2),478(in Chinese).
薛嗣创, 王戊, 吴殿震,等. 材料导报, 2011(专辑18),478.
8 Meng X K, Zhao C W.Materials Review A: Review Papers, 2013, 27(2),99 (in Chinese).
孟晓凯, 赵春旺.材料导报:综述篇, 2013, 27(2),99.
9 Liu Z H, Dai X F, Zhu Z Y, et al.Journal of Physics D-Applied Physics, 2004, 37(19), 2643.
10 Sakamoto H, Shimizu K. Isij International, 2007, 29(5), 395.
11 Likhachev A A, Ullakko K. Physics Letters A, 2000, 275(1-2),142.
12 Zhou X,Liang J H, Zhu M, et al. Journal of Functional Materials, 2009, 40(3),443.
13 Cai W, Meng X L, Zhao X Q, et al. Materials China, 2012, 31(12),30-40.
蔡伟, 孟祥龙, 赵新青,等. 中国材料进展, 2012, 31(12),30.
14 Yamabe-Mitarai Y, Arockiakumar R , Wadood A , et al. Materials Today, Proceedings, 2015, 2,S517.
15 Xue P F, Zhang F, Li Y, et al. Rare Metals, 2015, 39(1),84(in Chinese).
薛鹏飞, 张菲, 李岩,等. 稀有金属, 2015, 39(1),84.
16 Fedotov S G, Chelidze T V, Kovneristyy Y K, et al.Physics of Metals and Metallography(USSR), 1986, 62(2), 109.
17 Miyazaki S, Kim H Y, Buenconsejo P J S. European Symposium on Martensitic Transformations, 2009, 1(3),1.
18 Chilnicean G, Novac A, Sprincenatu R, et al.IOP Conference Series Materials Science and Engineering, 2018, 416,012017.
19 Hans Jürgen Maier, Karsten E, Paulsen A, et al.Journal of Materials Research, 2017, 32(23),1.
20 Niendorf T,Krooß P, Batyrsina E, et al. Materials Science & Engineering A, 2015, 620(620),359.
21 Buenconsejo P J S, Kim H Y, Hosoda H, et al.Acta Materialia, 2009, 57(4),1068.
22 Kim H Y,Fukushima T, Buenconsejo P J S, et al. Materials Science & Engineering A, 2011, 528(24),7238.
23 Tong Y X, Guo B, Zheng Y F, et al.Journal of Materials Engineering & Performance, 2011, 20(4-5),762.
24 Emmanuel Bertrand, Philippe Castany, Yang Yang, et al.Acta Materialia, 2016, 105,94.
25 Khan W Q , Wang Q , Jin X .High Temperature Materials and Processes, 2016, 36(2),113.
26 Zheng X H, Sui J H, Zhang X, et al.Journal of Alloys & Compounds, 2012, 539(15),144.
27 Zheng X H, Sui J H, Zhang X, et al.Scripta Materialia, 2013, 68(12),1008.
28 Zheng X H , Sui J H , Yang Z Y , et al.Chinese Physics B, 2017, 26(5),056103.
29 Ferrari A, Paulsen A, Frenzel J, et al.Physical Review Materials, 2018, 2(7), 073609.
30 Ning R, Zheng X H, Yao J, et al.Vacuum, 2018, 153, 1.
31 Meisner L L, Markov A B, Rotshtein V P, et al.Journal of Alloys and Compounds, 2018, 730, 376.
32 Feng Z W, Cui Y, Shang Z Y, et al. Materials Review, 2016(S2),616 (in Chinese).
冯昭伟, 崔跃, 尚再艳, 等. 材料导报, 2016(专辑28),616.
33 Li Y, Cui Y,Zhang F, et al. Scripta Materialia, 2011, 64(6),584.
34 Cui Y, Li Y, Luo K, et al.Materials Science & Engineering A, 2010, 527(3),652.
35 Qu W, Sun X, Yuan B, et al.Materials Characterization, 2017, 126,81.
36 Qu W, Sun X,Yuan B, et al. Materials Characterization, 2016, 122, 1.
37 Zhu Z W, Xiong C Y, Wang J, et al.Acta Materialia, 2018, 154, 45.
38 Zhang F, Cui Y, Xue P F,et al. Rare Metal Materials and Engineering, 2013, 42(10),2131 (in Chinese).
张菲, 崔琰, 薛鹏飞, 等.稀有金属材料与工程, 2013, 42(10),2131.
39 Zheng X,Sui J,Zhang X,et al. Chinese Physics B, 2014, 23(1),466.
40 Zhang F, Yu Z, Xiong C, et al.Materials Science & Engineering A, 2017, 679,14.
41 Xiong C, Li Y, Yuan B, et al.Materials Science & Engineering A, 2016, 658,28.
42 Xue P, Li Y, Zhang F, et al.Scripta Materialia, 2015, 101, 99.
43 Xue P, Li Y, Li K, et al.Materials Science and Engineering: C, 2015, 50, 179.
44 Wang J, Li Q, Xiong C, et al.Journal of Alloys and Compounds, 2018, 737, 672.
45 Baker C.Metal Science Journal, 1971, 5(1),92.
46 Miyazaki S, Kim H Y, Hosoda H.Materials Science & Engineering A, 2006, s 438-440(15),18.
47 Kim H Y, Hashimoto S, Kim J I, et al.Materials Transactions, 2004, 45(7), 2443.
48 Kim H Y, Ikehara Y, Kim J I, et al.Acta Materialia, 2006, 54(9),2419.
49 Sun B, Meng X L, Gao Z Y, et al.Materials Science and Engineering: A, 2019, 742, 590.
50 Li Q, Niinomi M, Nakai M, et al.Materials Science and Engineering, A, 2012, 536, 197.
51 Zhang J, Sun F, Hao Y, et al.Materials Science & Engineering A, 2013, 563(563),78.
52 Hosoda H, Fukui Y, Inamura T, et al.Materials Science Forum, 2003, 426-432(4),3121.
53 Takahashi E, Sakurai T, Watanabe S, et al.Materials Transactions, 2002, 43(12), 2978.
54 Fukui Y, Inamura T, Hosoda H, et al.Materials Transactions, 2004, 45(4), 1077.
55 Ping D H, Mitarai Y, Yin F X.Scripta Materialia, 2005, 52(12),1287.
56 Kim H Y, Sasaki T, Okutsu K, et al.Acta Materialia, 2006, 54(2),423.
57 Golberg D, Xu Y, Murakami Y, et al.Intermetallics, 1995, 3(1),35.
58 Peng H Y, Wei Z G, Yang D Z. Journal of Materials Science and Engineering, 1994(1),5(in Chinese).
彭红樱, 魏中国, 杨大智. 材料科学与工程学报, 1994(1),5.
59 Wang C H, Liu M, Hu P F, et al.Journal of Alloys & Compounds, 2017, 720,488.
60 Ji X, Emura S, Liu T, et al.Journal of Alloys & Compounds, 2018, 737,221.
61 Song J, Jiang H, Fang Z, et al. Metallic Functional Materials, 2015, 22(3),16.
62 Endoh K, Tahara M, Inamura T, et al.Journal of Alloys & Compounds, 2017, 695,76.
63 Zhou T, Aindow M, Alpay S P, et al.Scripta Materialia, 2004, 50(3), 343.
[1] 李兴建, 白宝仕, 刘升, 苗玉杰, 郑朝晖, 丁小斌. 具有相分离结构的PMMA/PEG半互穿网络形状记忆高分子[J]. 材料导报, 2020, 34(2): 2142-2146.
[2] 邹芹, 党赏, 李艳国, 王明智, 熊建超. Fe-基形状记忆合金的研究进展[J]. 材料导报, 2019, 33(23): 3955-3962.
[3] 成小乐, 尹君, 屈银虎, 符寒光, 赵冰. 连续碳化硅纤维增强钛基(SiCf/Ti)复合材料的制备技术[J]. 《材料导报》期刊社, 2018, 32(5): 796-807.
[4] 李秀丽, 铁生年. 速溶高粘羧甲基纤维素钠对不同相变温度梯度芒硝基相变储能材料性能的影响[J]. 材料导报, 2018, 32(22): 3848-3852.
[5] 贺志荣, 吴佩泽, 刘康凯, 冯辉, 王家乐. Ni含量对激冷贫镍TiNi形状记忆合金薄带相变行为的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 17-20.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed