Please wait a minute...
材料导报  2020, Vol. 34 Issue (2): 2142-2146    https://doi.org/10.11896/cldb.19010200
  高分子与聚合物基复合材料 |
具有相分离结构的PMMA/PEG半互穿网络形状记忆高分子
李兴建1, 白宝仕1, 刘升1, 苗玉杰1, 郑朝晖2, 丁小斌2
1 临沂大学材料科学与工程学院,临沂 276000
2 中国科学院成都有机化学研究所,成都 610041
PMMA/PEG Semi-interpenetrating Network Shape Memory Polymer with Phase Separation Structure
LI Xingjian1, BAI Baoshi1, LIU Sheng1, MIAO Yujie1, ZHENG Zhaohui2, DING Xiaobin2
1 School of Materials Science and Engineering,Linyi University,Linyi 276000,China
2 Chengdu Institute of Organic Chemistry,Chinese Academy of Sciences,Chengdu 610041,China
下载:  全 文 ( PDF ) ( 4896KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用一步法,将不同分子量的线型聚乙二醇(PEG)与甲基丙烯酸甲酯(MMA)单体和交联剂原位聚合,制备了具有相分离结构的聚甲基丙烯酸甲酯/聚乙二醇半互穿聚合物网络(PMMA/PEG semi-IPNs)形状记忆高分子。采用差示扫描量热分析(DSC)、动态热力学分析(DMA)和应力-应变分析,对具有不同分子量PEG 的PMMA/PEG semi-IPNs形状记忆高分子的热性能、动态力学性能和力学性能进行了表征,同时采用DMA对其双形形状记忆效应和三形形状记忆效应进行了研究。结果表明,PMMA/PEG semi-IPNs形状记忆高分子同时具有PEG的结晶相和复合网络的无定形相区,由于PEG结晶熔融温度处于复合网络的玻璃化转变温度区,能够辅助增强复合材料的形状记忆性能,其固定率和回复率都可达99%以上,而且利用这两个热转变作为形状记忆的开关相可以实现PMMA/PEG semi-IPNs优异的三形形状记忆功能,并对其三形形状记忆效应机理进行了阐释。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李兴建
白宝仕
刘升
苗玉杰
郑朝晖
丁小斌
关键词:  形状记忆高分子  相分离  半互穿聚合物网络  三形形状记忆效应    
Abstract: In this work, in-situ polymerization of linear polyethylene glycol (PEG) with different molecular weights, methacrylate (MMA) monomers and crosslinking agent was carried out by a one-step approach, in order to prepare the shape memory polymer of poly(methyl methacrylate)/polyethylene glycol semi-interpenetrating networks (PMMA/PEG semi-IPNs) with phase separation structure. The thermal properties, dynamic mechanical properties and mechanical properties of PMMA/PEG semi-IPNs shape memory polymers with diverse molecular weights of PEG were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and stress-strain analysis. Furthermore, DMA was also employed to study the double shape memory effect and triple shape memory effect of the PMMA/PEG semi-IPNs. It was found that the PMMA/PEG semi-IPNs shape memory polymer showed both crystal phase of PEG and amorphous phase region of the composite network. Thanks to the melting temperature of PEG crystal that located in the glass transition temperature zone, the shape memory performance of the semi-IPNs could be synergistically enhanced, and both the fixed rate and the recovery rate of semi-IPNs exceeded 99%. Accordingly, exceptional triple shape memory effect can be achieved by taking these two thermal transitions as the switching phase of shape memory. Additionally, the mechanism of triple shape memory effect of PMMA/PEG semi-IPNs was expounded.
Key words:  shape memory polymer    phase separation    semi-interpenetrating polymer network    triple shape memory effect
               出版日期:  2020-01-25      发布日期:  2020-01-03
ZTFLH:  TB381  
基金资助: 国家自然科学基金(51173185;51303179);中国博士后科学基金(2017M611977)
通讯作者:  lixingjian1314@163.com   
作者简介:  李兴建,临沂大学,讲师。2016年博士毕业于中国科学院成都有机化学研究所,同年进入浙江大学从事博士后研究工作。2018年作为高水平博士任教于临沂大学材料科学与工程学院。以第一作者和通讯作者在国内外学术期刊发表论文40余篇。主要从事形状记忆高分子材料的研究。
引用本文:    
李兴建, 白宝仕, 刘升, 苗玉杰, 郑朝晖, 丁小斌. 具有相分离结构的PMMA/PEG半互穿网络形状记忆高分子[J]. 材料导报, 2020, 34(2): 2142-2146.
LI Xingjian, BAI Baoshi, LIU Sheng, MIAO Yujie, ZHENG Zhaohui, DING Xiaobin. PMMA/PEG Semi-interpenetrating Network Shape Memory Polymer with Phase Separation Structure. Materials Reports, 2020, 34(2): 2142-2146.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010200  或          http://www.mater-rep.com/CN/Y2020/V34/I2/2142
1 Zhao Q, Qi H J, Xie T.Progress in Polymer Science, 2015, 49-50,79.2 Tao X. Polymer, 2011, 52(22),4985.3 Leng J S, Lan X, Liu Y J, et al. Progress in Materials Science, 2011, 56(7),1077.4 Hu J L, Zhu Y, Huang H H, et al.Progress in Polymer Science, 2012, 37,1720.5 Xie T. Nature, 2010, 464(7286),267.6 He Z, Satarkar N, Xie T, et al. Advanced Materials, 2011, 23(28),3192.7 Xie T, Xiao X C, Cheng Y T. Macromolecular Rapid Communications, 2009, 30(21),1823.8 Zheng N, Xie T. Acta Polymerica Sinica, 2017(11),1715(in Chinese).郑宁, 谢涛. 高分子学报, 2017(11),1715.9 Zhao Q, Zou W K, Luo Y W, et al. Science Advances, 2016, 2(1),e1501297.10 Zheng N, Fang Z Z, Zou W K, et al. Angewandte Chemie International Edition, 2016, 55(38),1.11 Jin B J, Song H J, Jiang R Q, et al. Science Advances, 2018, 4(1),eaao3865.12 Zhang G G, Peng W J, Wu J J, et al. Nature Communications, 2018, 9,4002.13 Loöwenberg C, Balk M, Wischke C, et al. Accounts of Chemical Research, 2017, 50(4),723.14 Lu W, Le X X, Zhang J W, et al. Chemical Society Reviews, 2017, 46(5), 1284.15 Zhang Y, Li Y, Liu W. Advanced Functional Materials, 2015, 25(3),471.16 Lendlein A, Schmidt A M, Langer R. PANS, 2001, 98(3),842.17 Li X J, Pan Y, Zheng Z Z, et al. Macromolecular Rapid Communications, 2018, 39(6),1700613.18 Behl M, Bellin I, Kelch S, et al. Advanced Functional Materials, 2009, 19(1),102.19 Li X J, Pan Y, Lai J J, et al. Polymer Chemistry, 2017, 8(26),3867.20 Lewis C L, Meng Y, Anthamatten M. Macromolecules, 2015, 48(14),4918.21 Wang Y R, Li X J, Pan Y, et al. RSC Advances, 2014, 4(33),17156.22 Li X J, Wang Y R, Wu R Q, et al. Reactive and Functional Polymers, 2017, 119,26.23 Shibita A, Takase H, Shibata M. Polymer, 2014, 55(21),5407.24 Zhang S F, Feng Y K, Zhang L, et al. Journal of Polymer Science Part A: Polymer Chemistry, 2007, 45(5),768.25 Na Y H, Kurokawa T, Katsuyama Y, et al. Macromolecules, 2004, 37(14),5370.26 Ratna D, Karger-Kocsis J. Journal of Materials Science, 2008, 43(1),254.
[1] 谢敏, 王梅丰, 戴晓琴, 雷剑波, 王春霞, 周圣丰. 综论偏晶合金的制备技术:外场下凝固、快速凝固及激光技术[J]. 材料导报, 2019, 33(3): 490-499.
[2] 周存, 秦兆立, 王闻宇, 金欣, 林童, 朱正涛. 动力/储能锂离子电池隔膜制备先进技术及研究进展[J]. 材料导报, 2018, 32(23): 4051-4060.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[4] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[5] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[6] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[7] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[8] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[9] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[10] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed