Please wait a minute...
材料导报  2020, Vol. 34 Issue (8): 8200-8204    https://doi.org/10.11896/cldb.19040047
  高分子与聚合物基复合材料 |
发泡工艺及超临界二氧化碳诱导结晶作用对聚碳酸酯发泡行为的影响
吴志昂, 郑晓平, 龚莉雯, 王璠, 杨子程, 张利, 包锦标
宁波大学材料科学与化学工程学院,宁波 315211
Effects of Foaming Process and Supercritical Carbon Dioxide Induced Crystallization on Foaming Behavior of Polycarbonate
WU Zhi’ang, ZHENG Xiaoping, GONG Liwen, WANG Fan, YANG Zicheng, ZHANG Li, BAO Jinbiao
School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
下载:  全 文 ( PDF ) ( 3554KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用超临界二氧化碳(scCO2)发泡制备聚碳酸酯(PC)微孔材料,系统研究了饱和温度、饱和压力、饱和时间以及scCO2对PC的诱导结晶作用对其发泡行为的影响。通过调节发泡工艺制备了不同发泡倍率的PC发泡材料,用扫描电镜(SEM)观察泡孔形貌,结果表明,除了发泡温度和压力影响发泡行为外,饱和时间对PC发泡也具有较大影响。通过广角X射线衍射(WAXD)仪研究不同饱和时间下发泡材料的结晶度后发现,在一定温度和压力下,scCO2会诱导聚碳酸酯结晶,且结晶度随时间的延长而增加,而晶区的存在严重限制泡孔生长。只有在合适的饱和温度、饱和压力及饱和时间下,才能得到均匀分布的聚碳酸酯发泡材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴志昂
郑晓平
龚莉雯
王璠
杨子程
张利
包锦标
关键词:  聚碳酸酯  超临界二氧化碳  泡孔形貌  诱导结晶    
Abstract: In this work, polycarbonate (PC) microcellular foams were prepared by supercritical carbon dioxide (scCO2) foaming technology. The effects of saturation temperature, saturation pressure, saturation time as well as polycarbonate crystallization induced by scCO2 on foaming beha-vior were systematically studied. PC foams with various expansion ratio were prepared by tuning foaming parameters, and the cell structures were observed by SEM. It was found that not only the foaming parameters of foaming temperature, scCO2 pressure but also scCO2 saturation time affec-ted PC foaming behavior. Moreover, scCO2 saturation time is the main influencing factor to PC foaming behavior. The crystallization behavior of foams was investigated by wide-angle X-ray diffraction. It was indicated that polycarbonate crystallization could be induced at a certain temperature and pressure, and the crystallinity increased with saturation time increasing, which restricts the cell growth. Therefore, a uniform cell structure of PC foams could be obtained at a certain temperature, pressure and saturation time.
Key words:  polycarbonates    supercritical carbon dioxide    foaming behavior    induced crystallization
                    发布日期:  2020-04-25
ZTFLH:  TQ328  
基金资助: 宁波市自然科学基金(2017A61005);王宽诚幸福基金
通讯作者:  baojinbiao@nbu.edu.cn   
作者简介:  吴志昂,2017年6月毕业于宁波大学,获得工程学士学位。于2017年9月至2020年6月在宁波大学材料科学与化学工程学院攻读硕士研究生,主要从事高分子材料加工领域的研究。
包锦标,宁波大学材料科学与化学工程学院,副教授。2012年毕业于法国洛林大学,获博士学位。同年加入宁波大学工作至今,主要从事聚合物轻量化微孔材料的绿色制备与应用、高分子成型加工等研究。在国内外重要期刊发表文章多篇,申请发明专利多项。
引用本文:    
吴志昂, 郑晓平, 龚莉雯, 王璠, 杨子程, 张利, 包锦标. 发泡工艺及超临界二氧化碳诱导结晶作用对聚碳酸酯发泡行为的影响[J]. 材料导报, 2020, 34(8): 8200-8204.
WU Zhi’ang, ZHENG Xiaoping, GONG Liwen, WANG Fan, YANG Zicheng, ZHANG Li, BAO Jinbiao. Effects of Foaming Process and Supercritical Carbon Dioxide Induced Crystallization on Foaming Behavior of Polycarbonate. Materials Reports, 2020, 34(8): 8200-8204.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040047  或          http://www.mater-rep.com/CN/Y2020/V34/I8/8200
1 Gong Wei, He Li, Lou Zu, et al. Modern Machinery, 2005,5(6),81(in Chinese).
龚维, 何力, 罗筑, 等.现代机械, 2005,5(6),81.
2 Lu X, Caps R, Fricke J, et al. Journal of Non-Crystalline Solids, 1995, 188(3), 226.
3 Yuan Shaojie, Yu Jiaqi, Chen Feng, et al. Chemical Reaction Enginee-ring and Technology, 2015, 31(6), 499(in Chinese).
袁绍杰, 余嘉琪, 陈枫, 等.化学反应工程与工艺, 2015, 31(6),499.
4 Huang Muzhang, Zhou Nanqiao, Wen Shengping, et al. Engineering Plastics Application, 2007,35(6),74(in Chinese).
黄目张,周南桥,文生平,等.工程塑料,2007,35(6),74.
5 Huang Q, Seibig B, Paul D. Journal of Membrane Science, 1999, 161(1-2),287.
6 Xiang Banglong, et al. Materials Science and Technology, 2007,15(2),233(in Chinese).
向帮龙,管蓉,方荃, 等.材料科学与工艺,2007,15(2), 233.
7 Zhai W, Yu J, Wu L, et al. Polymer, 2006, 47(21),7580.
8 Beckman E, Porter R.S, et al. Polymer Science Part B: Polymer Physics 1987,25,1511.
9 Li G, Park C B. Journal of Applied Polymer Science, 2010, 118, 2898.
10 Sun Y, Matsumoto M, Kitashima K, et al. The Journal of Supercritical Fluids, 2014, 95,35.
11 Huang Muzhang, Zhou Nanqiao. Modern Plastics Processing and Applications, 2007, 19(6),49(in Chinese).
黄目张, 周南桥. 现代塑料加工应用, 2007,19(6),49.
12 Cloarec T. Processing and characterization of polycarbonate foams with supercritical CO2 and 5-phenyl-1H-tetrazole. Master’s Thesis, University of North Texas, USA,2015.
13 Bao Jinbiao. Supercritical carbon dioxide assisted toughening of polypropylene and polystyrene: process, microstructure and mechanical properties. Doctor’s Thesis, China, 2012(in Chinese).
包锦标.超临界CO2协助的聚丙烯和聚苯乙烯增韧研究过程、微结构和机械性能. 博士学位论文,华东理工大学, 2012.
14 Leung S N, Park C B, Xu D, et al. Industrial & Engineering Chemistry Research, 2006, 45(23),7823.
[1] 龚莉雯, 郑晓平, 吴志昂, 王璠, 杨子程, 张利, 包锦标. 微孔发泡聚碳酸酯-聚烯烃弹性体共混物[J]. 材料导报, 2020, 34(10): 10197-10200.
[2] 王景昌, 赵宇, 苗宏雨, 赵启成, 詹世平. 超临界二氧化碳辅助制备β-环糊精-药物包合物的研究进展[J]. 材料导报, 2019, 33(Z2): 542-546.
[3] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[4] 郑晓平, 王璠, 吴志昂, 龚莉雯, 包锦标, 王市伟. 聚甲基丙烯酸甲酯纳米发泡材料的制备:胶束尺寸对发泡行为的影响[J]. 材料导报, 2019, 33(4): 709-713.
[5] 杨晨光, 赵全, 张茂江, 邢哲, 吴国忠. 聚四氟乙烯微粉对超临界CO2发泡聚丙烯泡孔结构及性能的改善[J]. 材料导报, 2019, 33(21): 3547-3551.
[6] 余鹏, 项佩, 高金玲, 李媛. 基于相形态结构的PLA/PBS共混物微孔发泡行为[J]. 材料导报, 2019, 33(20): 3524-3530.
[7] 黄辉, 韩健峰, 王奕顺, 夏阳, 张俊, 甘永平, 梁初, 张文魁. 富锂锰表面超临界CO2辅助包覆磷酸锰锂及其电化学性能[J]. 材料导报, 2018, 32(23): 4072-4078.
[8] 喻选,辛勇. 聚合物注塑成型充模阶段流动取向分子机理研究[J]. 《材料导报》期刊社, 2018, 32(2): 327-332.
[9] 贺凯, 陈诺夫, 魏立帅, 王从杰, 陈吉堃. 退火对铝诱导结晶锗薄膜的影响及其机理[J]. 材料导报, 2018, 32(15): 2571-2575.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed