Please wait a minute...
材料导报  2019, Vol. 33 Issue (4): 709-713    https://doi.org/10.11896/cldb.201904028
  高分子与聚合物基复合材料 |
聚甲基丙烯酸甲酯纳米发泡材料的制备:胶束尺寸对发泡行为的影响
郑晓平1,王璠1,吴志昂1,龚莉雯1,包锦标1,,王市伟2
1 宁波大学材料科学与化学工程学院,宁波 315211;
2 郑州大学微纳成型技术国家级国际联合研究中心及河南省微成型重点实验室,郑州 450001
Preparation of Nano-cellular PMMA Foam: Effect of Micelle Size on
Foaming Behavior
ZHENG Xiaoping1, WANG Fan1, WU Zhiang1, GONG Liwen1, BAO Jinbiao1, WANG Shiwei2
1 Department of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211;
2 National Center for International Research of Micro-nano Molding Technology & Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou 450001
下载:  全 文 ( PDF ) ( 4994KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用超临界二氧化碳固态发泡法制备聚甲基丙烯酸甲酯(PMMA)纳米发泡材料,通过添加两嵌段共聚物聚苯乙烯-聚甲基丙烯酸甲酯(PMMA/PS-b-PMMA)来调控共混物的胶束尺寸,系统研究胶束尺寸对发泡行为的影响。首先,根据嵌段“自组装”的特性,通过控制嵌段质量比制备出不同胶束尺寸的原始样品。通过透射电镜(TEM)观察可知,胶束尺寸随嵌段质量比增加而变大。其次,利用扫描电镜(SEM)探索了胶束尺寸对其发泡行为的影响。结果表明,胶束尺寸对泡孔形貌有显著影响,胶束尺寸过小反而会导致大小孔形貌出现,只有当胶束尺寸与泡孔尺寸为一个数量级时,才能得到均匀分布的泡孔;此外,研究还发现增大胶束含量有助于得到倍率高且泡孔均匀的纳米孔径发泡材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑晓平
王璠
吴志昂
龚莉雯
包锦标
王市伟
关键词:  聚甲基丙烯酸甲酯  嵌段共聚物  超临界二氧化碳  纳米发泡材料  胶束尺寸  发泡行为    
Abstract: In this work, we systematically investigated the foaming behavior of polymethyl methacrylate nano-cellular foams during the process of supercritical CO2 assisted solid-state foaming with varied blends micelle sizes which was tailored by adding the dual block copolymer of polystyrene-PMMA. According to the "self-assembly" of block copolymer, specimens with various micelle sizes were prepared by controlling the block ratio, and characterized by TEM. The results revealed that micelle size of the polymer blends increases with increasing block ratio. Furthermore, the cell morphologies of the resultant polymer foams was determined by SEM analysis, and confirmed the significant influence of micelle size on foaming behavior. It should be noted that the small size of micelle leads to poor cell distribution. When micelle size and cell size are at the same order of magnitude, the uniform cell morphology can be obtained. In addition, nano-cellular foams for high expansion and uniform cell distribution can be achieved due to the increase of micelle number.
Key words:  polymethyl methacrylate    block copolymer    supercritical CO2    nano-cellular foam    micelle sizes,foaming behavior
               出版日期:  2019-02-25      发布日期:  2019-03-11
ZTFLH:  TQ325  
基金资助: 宁波大学王宽诚幸福基金;宁波市自然科学基金(2017A610045)
作者简介:  郑晓平,宁波大学硕士研究生。2016年6月至2019年9月就读于宁波大学材料工程专业。研究工作主要围绕超临界微孔发泡材料,开展关于加工工艺以及设备的应用研究。包锦标,宁波大学副教授。2003年9月至2012年6月,获得华东理工大学工学博士。其团队主要研究方向包括:纳米有序结构材料的研发、聚烯烃微孔微孔发泡的开发。
引用本文:    
郑晓平, 王璠, 吴志昂, 龚莉雯, 包锦标, 王市伟. 聚甲基丙烯酸甲酯纳米发泡材料的制备:胶束尺寸对发泡行为的影响[J]. 材料导报, 2019, 33(4): 709-713.
ZHENG Xiaoping, WANG Fan, WU Zhiang, GONG Liwen, BAO Jinbiao, WANG Shiwei. Preparation of Nano-cellular PMMA Foam: Effect of Micelle Size on
Foaming Behavior. Materials Reports, 2019, 33(4): 709-713.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201904028  或          http://www.mater-rep.com/CN/Y2019/V33/I4/709
1 Gong W, He L, Luo Z, et al. Modern Machinery,2005(6),81(in Chinese).龚维,何力,罗筑,等.现代机械,2005(6),81.2 Lu X, Caps R, Fricke J.Journal of Non-Crystalline Solids,1995,188(3),226.3 Miller D, Kumar V. Polymer,2011,52(13),2910.4 Luo Y W, Xin C L, Li X H, et al. Plastics Science and Technology,2014,42(2),127(in Chinese).罗祎玮,信春玲,李晓虎,等.塑料科技,2014,42(2),127.5 Yuan S J, Yu J Q, Chen F, et al. Chemical Reaction Engineering and Technology,2015,31(6),499.袁绍杰,余嘉琪,陈枫,等.化学反应工程与工艺,2015,31(6),499.6 Notario B, Pinto J, Rodriguez-Perez M A. Progress in Materials Science,2016, s78-79,93.7 Zhu S S. Preparation of nanocellular poly(aryl ether ketone) foam. Ph.D. Thesis, Jilin University,China,2015(in Chinese).朱仕升.纳孔聚芳醚酮泡沫材料的制备.博士学位论文,吉林大学,2015.8 Costeux S, Zhu L. Polymer,2013,54(11),2785.9 Spitael P, And C W M, Mcclurg R B. Macromolecules,2004,37(18),6874.10 Yokoyama H, Sugiyama K. Macromolecules,2005,38(25),10516.11 Pinto J, Dumon M, Pedros M, et al. Chemical Engineering Journal,2014,243,428.12 Spitael P, Macosko C W, McClurg R B. Macromolecules,2004,37(18),6874.13 Darling S B. Progress in Polymer Science,2007,32(10),1152.14 Bao J B, Weng G S, Zhao L, et al. Journal of Cellular Plastics,2014,50(4),381.15 Mayes A M,Cruz M O D L. Macromolecules,1988,21(8),2543.
[1] 路小彬. 基于嵌段共聚物的硅表面聚合物刷点阵组装[J]. 材料导报, 2019, 33(z1): 505-509.
[2] 戴红, 刘跃军, 崔玲娜, 李秋艾. PBSu/PBAu嵌段聚酯酰脲共聚物的合成及流变性能[J]. 材料导报, 2019, 33(2): 347-351.
[3] 王胜涛, 卢维尔, 王桐, 夏洋. PMMA/PVA双支撑膜辅助铜刻蚀法:一种改进的石墨烯转移技术[J]. 材料导报, 2019, 33(2): 230-233.
[4] 黄辉, 韩健峰, 王奕顺, 夏阳, 张俊, 甘永平, 梁初, 张文魁. 富锂锰表面超临界CO2辅助包覆磷酸锰锂及其电化学性能[J]. 材料导报, 2018, 32(23): 4072-4078.
[5] 马晓燕, 陈华鑫, 张星宇, 邢明亮, 杨平文, 王兆力. SBS改性沥青低温流变性与原材料性能相关性研究[J]. 材料导报, 2018, 32(22): 3885-3890.
[6] 王克强, 叶深杰, 王文锦, 付甲, 陈忠仁. 不同共混方式下非对称嵌段共聚物PS-b-PMMA对PCHMA/PMMA
体系增容效果的研究:界面与胶束的竞争*
[J]. 《材料导报》期刊社, 2017, 31(8): 98-103.
[7] 黄林, 杨艳琼, 余峰, 付甲, 陈忠仁. 嵌段共聚物增容共混聚合物的相形貌及胶束迁移行为研究*[J]. 《材料导报》期刊社, 2017, 31(4): 100-104.
[8] 叶深杰, 余锋, 王克强, 王文锦, 陈忠仁. 嵌段共聚物PS-b-PMMA在PCHMA/PMMA共混体系中增容效果的研究:嵌段比、分子量及粘度的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 87-93.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed