Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (4): 87-93    https://doi.org/10.11896/j.issn.1005-023X.2017.04.020
  材料研究 |
嵌段共聚物PS-b-PMMA在PCHMA/PMMA共混体系中增容效果的研究:嵌段比、分子量及粘度的影响*
叶深杰1, 余锋1, 王克强1, 王文锦1, 陈忠仁1,2
1 宁波大学材料科学与化学工程学院, 宁波 315211;
2 南方科技大学化学系, 深圳 518055
Study on Effect of Block Copolymer PS-b-PMMA on Compatibility of PCHMA/
PMMA Blends: Influences of Block Ratio, Molecular Weight and Viscosity
YE Shenjie1, YU Feng1, WANG Keqiang1, WANG Wenjin1, CHEN Zhongren1,2
1 Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211;
2 Department of Chemistry, South University of Science and Technology of China, Shenzhen 518055
下载:  全 文 ( PDF ) ( 1659KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用熔融共混方式,利用两嵌段共聚物聚苯乙烯-b-聚甲基丙烯酸甲酯(PS-b-PMMA)来增容聚甲基丙烯酸环己酯(PCHMA)/聚甲基丙烯酸甲酯(PMMA)共混体系,主要研究PS-b-PMMA嵌段比、均聚物的分子量以及体系粘度对增容效果的影响。研究发现,非对称结构的嵌段共聚物较对称结构的嵌段共聚物更容易在体相形成胶束,胶束的形成减少了嵌段共聚物在界面的利用率。均聚物分子量增大,嵌段共聚物的胶束均增加。分散相分子量增大,造成了界面的嵌段共聚物稳定性减弱,容易扩散至分散相内部,形成胶束。连续相分子量增大致使链段溶胀力减小,嵌段共聚物胶束外围的乳化效果降低,而且连续相粘度增大,使得嵌段共聚物胶束滞留在连续相,难以迁移至界面。共混体系的混合剪切增加,粘度变小,嵌段共聚物的扩散速率加快。通过调控均聚物分子量和体系粘度,能有效地减少体相胶束的形成,增大嵌段共聚物在界面的利用率。通过Leibler干湿刷理论、焓驱溶胀聚合物刷以及Stokes-Einstein扩散理论可以解释相关的结论。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶深杰
余锋
王克强
王文锦
陈忠仁
关键词:  嵌段共聚物  增容  嵌段比  粘度  胶束  界面    
Abstract: Melt-mixed method was used to compatibilize poly(cyclohexyl methacrylate) (PCHMA) and poly (methyl methacrylate) (PMMA) binary blends by adding diblock copolymer polystyrene-b-poly (methyl methacrylate) (PS-b-PMMA). Effects of block ratio of PS-b-PMMA, molecular weight (MW) of each homopolymer component,and viscosity of the blend on its compatibility were discussed. We found that the asymmetric block copolymers (BCPs) tend to form micelles and reduce the compatibilization efficiency, rather than the symmetric BCPs. A higher MW leads to an increased amount of BCP micelles. Specifically, increasing the MW of dispersed phase (PMMA) destabilizes the interface, enhances the BCP diffusion into the PMMA phase and forms a larger amount of micelles. On the other hand, increasing the MW of matrix (PCHMA) leads to the increase of phase viscosity, suppresses swelling and external emulsification of the micelle PS block, reduces the micelle migration and keeps the BCP micelles detented inside the PCHMA phase. Therefore, the compatibilization efficiency can be controlled by manipulating the MW of homopolymer component, BCP symmetry and shear viscosity. Finally, the results were interpreted by the Leibler wet-dry brush theory, enthalpy-driven swelling of a polymer brush and Stokes- Einstein diffusion theory.
Key words:  block copolymer    compatibilization    block ratio    viscosity    micelle    interface
               出版日期:  2017-02-25      发布日期:  2018-05-02
ZTFLH:  TQ320.1  
  TQ320.2  
  TQ320.7  
基金资助: *化学工程联合国家重点实验开放课题(SKL-ChE-12D01);浙江省重点科技创新团队计划(2011R50001);浙江省科技创新团队子项目(019-E01176124200);宁波市“3315”计划(A类)(2012S0001)
通讯作者:  陈忠仁:通讯作者,1964年生,博士,教授,主要研究方向为聚合物分子设计与可控聚合、高分子聚集态结构调控与表征、有机纳米材料多尺度加工、高分子复合材料界面设计与调控、高分子疲劳失效机理与寿命预测等 E-mail:chenzr@sustc.edu.cn   
引用本文:    
叶深杰, 余锋, 王克强, 王文锦, 陈忠仁. 嵌段共聚物PS-b-PMMA在PCHMA/PMMA共混体系中增容效果的研究:嵌段比、分子量及粘度的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 87-93.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.04.020  或          http://www.mater-rep.com/CN/Y2017/V31/I4/87
1 Koning C, Duin M V, Pagnoulle C, et al. Strategies for compatibilization of polymer blends[J]. Prog Polym Sci,1998,23(4):707.
2 Macosko C W, Guegan P, Khandpur A K, et al. Compatibilizers for melt blending: Premade block copolymers[J]. Macromolecules,1996,29(17):5590.
3 Jeon H K, Zhang J, Macosko C W. Premade vs. reactively formed compatibilizers for PMMA/PS melt blends[J]. Polymer,2005,46(26):12422.
4 Dorel Feldman. Polyblend compatibilization[J]. J Macromol Sci Part A,2005,42(5):587.
5 Zhang Guoying, Wu Qiang, Wang Weizhi. Compatibilizing effect of copolymers in polymer blends I. block copolymers[J]. Chin Polym Bull,2003(2):37(in Chinese).
张国颖, 吴强, 汪伟志. 共聚物在聚合物共混体系中的增容作用I.嵌段共聚物[J]. 高分子通报,2003(2):37.
6 Wang Jian, Lu Yuyuan, Xu Yuci, et al. Effects of block copolymer compatibilizers on phase behavior and interfacial properties of incompatible homopolymer composites[J]. Acta Polym Sin,2016(3):271(in Chinese).
王健, 卢宇源, 徐玉赐,等. 嵌段共聚物增容剂对不相容均聚物共混体系相行为和界面性质的影响[J]. 高分子学报,2016(3):271.
7 Adeyinka Adedeji, Suping Lyu A, Macosko C W. Block copolymers in homopolymer blends: Interface vs micelles[J]. Macromolecules,2001,34(25):8663.
8 Zhong Shuo, Wang Chao, Weng Gengsheng, et al. Effect of LIR-390 on structure and properties of natural rubber and butadiene rubber[J]. Mater Rev,2015,29(S1):267(in Chinese).
钟硕, 王超, 翁更生,等. 液体异戊二烯-丁二烯共聚物对天然橡胶、顺丁橡胶结构与性能的影响[J]. 材料导报,2015,29(专辑25):267.
9 Huang C, Yu W. Role of block copolymer on the coarsening of morphology in polymer blend: Effect of micelles[J]. Aiche J,2015,61(1):285.
10 Jakubowski W, Matyjaszewski K. Activator generated by electron transfer for atom transfer radical polymerization[J]. Macromolecules,2005,38(10):4139.
11 Leibler L. Block copolymers at interfaces[J]. Physica A,1991,172(1):258.
12 Leibler L. Emulsifying effects of block copolymers in incompatible polymer blends[J]. Macromol Symp,1988,16(1):1.
13 Fredrickson G H, Bates F S. Design of bicontinuous polymeric microemulsions[J]. J Polym Sci Part B,1997,35(35):2775.
14 Janert P K, Schick M. Phase behavior of ternary homopolymer/diblock blends: Influence of relative chain lengths[J]. Macromolecules,1997,30(1):137.
15 Politakos N, Ntoukas E, Avgeropoulos A, et al. Physical properties of polymers handbook[M]. New York:Springer,2007.
16 Politakos N, Ntoukas E, Avgeropoulos A, et al. Strongly segregated cubic microdomain morphology consistent with the double gyroid phase in high molecular weight diblock copolymers of polystyrene and poly(dimethylsiloxane)[J]. J Polym Sci Part B,2009,47(23):2419.
17 Adedeji A, Hudson S D, Jamieson A M. Enthalpy-enhanced microphase separation in homopolymer/block copolymer blends[J]. Polymer,1997,38(3):737.
18 Brown H R, Char K, Deline V R. Enthalpy-driven swelling of a polymer brush[J]. Macromolecules,1990,23(13):3383.
19 Friedrich C, Schwarzwälder C, Riemann R E. Rheological and thermodynamic study of the miscible blend polystyrene/poly(cyclohexyl methacrylate)[J]. Polymer,1996,37(12):2499.
20 Kim J R, Hudson S D, Jamieson A M, et al. Influence of segmental swelling of a symmetric block copolymer on the morphology of melt-mixed immiscible polymer blends[J]. Macromolecules,1999,32(14):4582.
21 Bird R B, Stewart W E, Lightfoot E N, et al. Transport phenomena[M].New York: John Wiley & Sons,1960.
22 Atkins P W. Physical chemistry[J].3rd ed.New York: Freeman,1986.
[1] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[2] 薛艺, 田青超. 硬质合金切削刀具研究进展[J]. 材料导报, 2019, 33(z1): 353-357.
[3] 薛秀丽, 曾超峰, 王世斌, 李林安, 王志勇. 溶剂对PMMA基底上金属薄膜形貌的影响[J]. 材料导报, 2019, 33(z1): 412-415.
[4] 刘新灵, 陶春虎, 王天宇. 夹杂物形状对夹杂/基体界面应力应变分布的影响[J]. 材料导报, 2019, 33(z1): 436-439.
[5] 王婷, 张守海, 蹇锡高, 刘乾, 刘泽元. 界面聚合法合成含杂萘酮联苯结构共聚芳酯[J]. 材料导报, 2019, 33(z1): 495-498.
[6] 路小彬. 基于嵌段共聚物的硅表面聚合物刷点阵组装[J]. 材料导报, 2019, 33(z1): 505-509.
[7] 邓云华, 陶军, 马旭颐. TC4钛合金刚性拘束热自压扩散连接接头疲劳性能分析[J]. 材料导报, 2019, 33(9): 1449-1454.
[8] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[9] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[10] 翟恒来, 齐宁, 孙逊, 张翔宇, 樊家铖. 一种新型纳米SiO2降压增注剂的制备与评价[J]. 材料导报, 2019, 33(6): 975-979.
[11] 邱博, 邢书明, 董琦. 颗粒增强金属基复合材料界面结合强度的表征:理论模型、有限元模拟和实验测试[J]. 材料导报, 2019, 33(5): 862-870.
[12] 郑晓平, 王璠, 吴志昂, 龚莉雯, 包锦标, 王市伟. 聚甲基丙烯酸甲酯纳米发泡材料的制备:胶束尺寸对发泡行为的影响[J]. 材料导报, 2019, 33(4): 709-713.
[13] 于坤, 韩晓东, 何丽华, 贾庆明, 陕绍云, 苏红莹. 用于药物载体系统的多糖材料的修饰方法[J]. 材料导报, 2019, 33(3): 510-516.
[14] 戴红, 刘跃军, 崔玲娜, 李秋艾. PBSu/PBAu嵌段聚酯酰脲共聚物的合成及流变性能[J]. 材料导报, 2019, 33(2): 347-351.
[15] 王刘珏,薛松柏,刘晗,林尧伟,陈宏能. 电子封装用Au-20Sn钎料研究进展[J]. 材料导报, 2019, 33(15): 2483-2489.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed