Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (4): 87-93    https://doi.org/10.11896/j.issn.1005-023X.2017.04.020
  材料研究 |
嵌段共聚物PS-b-PMMA在PCHMA/PMMA共混体系中增容效果的研究:嵌段比、分子量及粘度的影响*
叶深杰1, 余锋1, 王克强1, 王文锦1, 陈忠仁1,2
1 宁波大学材料科学与化学工程学院, 宁波 315211;
2 南方科技大学化学系, 深圳 518055
Study on Effect of Block Copolymer PS-b-PMMA on Compatibility of PCHMA/
PMMA Blends: Influences of Block Ratio, Molecular Weight and Viscosity
YE Shenjie1, YU Feng1, WANG Keqiang1, WANG Wenjin1, CHEN Zhongren1,2
1 Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211;
2 Department of Chemistry, South University of Science and Technology of China, Shenzhen 518055
下载:  全 文 ( PDF ) ( 1659KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用熔融共混方式,利用两嵌段共聚物聚苯乙烯-b-聚甲基丙烯酸甲酯(PS-b-PMMA)来增容聚甲基丙烯酸环己酯(PCHMA)/聚甲基丙烯酸甲酯(PMMA)共混体系,主要研究PS-b-PMMA嵌段比、均聚物的分子量以及体系粘度对增容效果的影响。研究发现,非对称结构的嵌段共聚物较对称结构的嵌段共聚物更容易在体相形成胶束,胶束的形成减少了嵌段共聚物在界面的利用率。均聚物分子量增大,嵌段共聚物的胶束均增加。分散相分子量增大,造成了界面的嵌段共聚物稳定性减弱,容易扩散至分散相内部,形成胶束。连续相分子量增大致使链段溶胀力减小,嵌段共聚物胶束外围的乳化效果降低,而且连续相粘度增大,使得嵌段共聚物胶束滞留在连续相,难以迁移至界面。共混体系的混合剪切增加,粘度变小,嵌段共聚物的扩散速率加快。通过调控均聚物分子量和体系粘度,能有效地减少体相胶束的形成,增大嵌段共聚物在界面的利用率。通过Leibler干湿刷理论、焓驱溶胀聚合物刷以及Stokes-Einstein扩散理论可以解释相关的结论。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶深杰
余锋
王克强
王文锦
陈忠仁
关键词:  嵌段共聚物  增容  嵌段比  粘度  胶束  界面    
Abstract: Melt-mixed method was used to compatibilize poly(cyclohexyl methacrylate) (PCHMA) and poly (methyl methacrylate) (PMMA) binary blends by adding diblock copolymer polystyrene-b-poly (methyl methacrylate) (PS-b-PMMA). Effects of block ratio of PS-b-PMMA, molecular weight (MW) of each homopolymer component,and viscosity of the blend on its compatibility were discussed. We found that the asymmetric block copolymers (BCPs) tend to form micelles and reduce the compatibilization efficiency, rather than the symmetric BCPs. A higher MW leads to an increased amount of BCP micelles. Specifically, increasing the MW of dispersed phase (PMMA) destabilizes the interface, enhances the BCP diffusion into the PMMA phase and forms a larger amount of micelles. On the other hand, increasing the MW of matrix (PCHMA) leads to the increase of phase viscosity, suppresses swelling and external emulsification of the micelle PS block, reduces the micelle migration and keeps the BCP micelles detented inside the PCHMA phase. Therefore, the compatibilization efficiency can be controlled by manipulating the MW of homopolymer component, BCP symmetry and shear viscosity. Finally, the results were interpreted by the Leibler wet-dry brush theory, enthalpy-driven swelling of a polymer brush and Stokes- Einstein diffusion theory.
Key words:  block copolymer    compatibilization    block ratio    viscosity    micelle    interface
出版日期:  2017-02-25      发布日期:  2018-05-02
ZTFLH:  TQ320.1  
  TQ320.2  
  TQ320.7  
基金资助: *化学工程联合国家重点实验开放课题(SKL-ChE-12D01);浙江省重点科技创新团队计划(2011R50001);浙江省科技创新团队子项目(019-E01176124200);宁波市“3315”计划(A类)(2012S0001)
通讯作者:  陈忠仁:通讯作者,1964年生,博士,教授,主要研究方向为聚合物分子设计与可控聚合、高分子聚集态结构调控与表征、有机纳米材料多尺度加工、高分子复合材料界面设计与调控、高分子疲劳失效机理与寿命预测等 E-mail:chenzr@sustc.edu.cn   
引用本文:    
叶深杰, 余锋, 王克强, 王文锦, 陈忠仁. 嵌段共聚物PS-b-PMMA在PCHMA/PMMA共混体系中增容效果的研究:嵌段比、分子量及粘度的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 87-93.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.04.020  或          https://www.mater-rep.com/CN/Y2017/V31/I4/87
1 Koning C, Duin M V, Pagnoulle C, et al. Strategies for compatibilization of polymer blends[J]. Prog Polym Sci,1998,23(4):707.
2 Macosko C W, Guegan P, Khandpur A K, et al. Compatibilizers for melt blending: Premade block copolymers[J]. Macromolecules,1996,29(17):5590.
3 Jeon H K, Zhang J, Macosko C W. Premade vs. reactively formed compatibilizers for PMMA/PS melt blends[J]. Polymer,2005,46(26):12422.
4 Dorel Feldman. Polyblend compatibilization[J]. J Macromol Sci Part A,2005,42(5):587.
5 Zhang Guoying, Wu Qiang, Wang Weizhi. Compatibilizing effect of copolymers in polymer blends I. block copolymers[J]. Chin Polym Bull,2003(2):37(in Chinese).
张国颖, 吴强, 汪伟志. 共聚物在聚合物共混体系中的增容作用I.嵌段共聚物[J]. 高分子通报,2003(2):37.
6 Wang Jian, Lu Yuyuan, Xu Yuci, et al. Effects of block copolymer compatibilizers on phase behavior and interfacial properties of incompatible homopolymer composites[J]. Acta Polym Sin,2016(3):271(in Chinese).
王健, 卢宇源, 徐玉赐,等. 嵌段共聚物增容剂对不相容均聚物共混体系相行为和界面性质的影响[J]. 高分子学报,2016(3):271.
7 Adeyinka Adedeji, Suping Lyu A, Macosko C W. Block copolymers in homopolymer blends: Interface vs micelles[J]. Macromolecules,2001,34(25):8663.
8 Zhong Shuo, Wang Chao, Weng Gengsheng, et al. Effect of LIR-390 on structure and properties of natural rubber and butadiene rubber[J]. Mater Rev,2015,29(S1):267(in Chinese).
钟硕, 王超, 翁更生,等. 液体异戊二烯-丁二烯共聚物对天然橡胶、顺丁橡胶结构与性能的影响[J]. 材料导报,2015,29(专辑25):267.
9 Huang C, Yu W. Role of block copolymer on the coarsening of morphology in polymer blend: Effect of micelles[J]. Aiche J,2015,61(1):285.
10 Jakubowski W, Matyjaszewski K. Activator generated by electron transfer for atom transfer radical polymerization[J]. Macromolecules,2005,38(10):4139.
11 Leibler L. Block copolymers at interfaces[J]. Physica A,1991,172(1):258.
12 Leibler L. Emulsifying effects of block copolymers in incompatible polymer blends[J]. Macromol Symp,1988,16(1):1.
13 Fredrickson G H, Bates F S. Design of bicontinuous polymeric microemulsions[J]. J Polym Sci Part B,1997,35(35):2775.
14 Janert P K, Schick M. Phase behavior of ternary homopolymer/diblock blends: Influence of relative chain lengths[J]. Macromolecules,1997,30(1):137.
15 Politakos N, Ntoukas E, Avgeropoulos A, et al. Physical properties of polymers handbook[M]. New York:Springer,2007.
16 Politakos N, Ntoukas E, Avgeropoulos A, et al. Strongly segregated cubic microdomain morphology consistent with the double gyroid phase in high molecular weight diblock copolymers of polystyrene and poly(dimethylsiloxane)[J]. J Polym Sci Part B,2009,47(23):2419.
17 Adedeji A, Hudson S D, Jamieson A M. Enthalpy-enhanced microphase separation in homopolymer/block copolymer blends[J]. Polymer,1997,38(3):737.
18 Brown H R, Char K, Deline V R. Enthalpy-driven swelling of a polymer brush[J]. Macromolecules,1990,23(13):3383.
19 Friedrich C, Schwarzwälder C, Riemann R E. Rheological and thermodynamic study of the miscible blend polystyrene/poly(cyclohexyl methacrylate)[J]. Polymer,1996,37(12):2499.
20 Kim J R, Hudson S D, Jamieson A M, et al. Influence of segmental swelling of a symmetric block copolymer on the morphology of melt-mixed immiscible polymer blends[J]. Macromolecules,1999,32(14):4582.
21 Bird R B, Stewart W E, Lightfoot E N, et al. Transport phenomena[M].New York: John Wiley & Sons,1960.
22 Atkins P W. Physical chemistry[J].3rd ed.New York: Freeman,1986.
[1] 潘元帅, 王刚, 冯海霞, 柳军, 袁波, 田朋丹, 韩艺辉. 镍基高温合金与耐火材料界面特性研究[J]. 材料导报, 2025, 39(3): 22100206-7.
[2] 崔潮, 李渊, 党颖泽, 王岚, 彭晖. 碱-矿渣-偏高岭土基地聚物与骨料的界面粘结机理[J]. 材料导报, 2025, 39(1): 23110101-8.
[3] 吴迪, 林方敏, 张洪龙, 宋孟, 杨永, 殷兆良, 章小峰. 合金元素对bcc-Cu/NiAl共析出影响的第一性原理研究[J]. 材料导报, 2024, 38(9): 22070183-6.
[4] 赵涔凯, 邹杰鑫, 王旻, 李思明, 赵微, 张时林, 滕珏瑾, 王艳皎, 吴明铂, 胡涵, 李亚伟. 基于阴离子交换膜电解水的离聚物研究进展[J]. 材料导报, 2024, 38(8): 23080132-11.
[5] 魏一帆, 夏会聪, 张佳楠. 钠离子存储器件中界面效应作用机制研究[J]. 材料导报, 2024, 38(8): 23120085-9.
[6] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[7] 张霞, 吴瑛, 袁牧锋, 王春栋. MOFs衍生物在尿素氧化中的研究进展[J]. 材料导报, 2024, 38(6): 23020193-10.
[8] 长俊钢, 陈玉, 何静, 梁奇银, 雷晓波, 蔡芳共, 张勤勇. 热电器件界面性能的研究现状[J]. 材料导报, 2024, 38(6): 22080238-13.
[9] 姚志华, 张建华, 辛建平, 穆锐. 风积砂-黄土混合料与钢界面的环形剪切力学特性[J]. 材料导报, 2024, 38(5): 23070012-8.
[10] 朱本清, 余红发, 巩旭, 吴成友, 麻海燕. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5): 22070190-7.
[11] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[12] 孙茂钧, 胡涛, 栾红波, 李茜, 佘祖新, 柏遇合, 王玲, 杨小奎, 周堃. 胶粘剂在湿热环境下的老化行为规律及环境损伤机理[J]. 材料导报, 2024, 38(5): 22090006-6.
[13] 王成君, 杨晓东, 张辉, 周幸叶, 戴家赟, 李早阳, 段晋胜, 乔丽, 王广来. 薄界面异质异构晶圆键合技术研究现状及趋势[J]. 材料导报, 2024, 38(24): 23100102-14.
[14] 司春棣, 崔亚宁, 李松, 贾彦顺, 凡涛涛, 张义. 铁尾矿在沥青路面中的资源化利用研究进展与展望[J]. 材料导报, 2024, 38(22): 24050001-13.
[15] 赵登婕, 李康宁, 胡李纳, 闫彤, 杨艳坤, 郝阳, 张晨曦, 郝玉英. 氧化锡电子传输层在正置钙钛矿太阳能电池中的研究进展[J]. 材料导报, 2024, 38(21): 23040102-11.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed