Research Status and Trends of Ultra-thin Interface Heterogeneous Wafer Bonding Technology
WANG Chengjun1,2, YANG Xiaodong2, ZHANG Hui1,*, ZHOU Xingye3, DAI Jiayun4, LI Zaoyang5, DUAN Jinsheng2, QIAO Li2, WANG Guanglai6
1 School of Mechanical Engineering, Southeast University, Nanjing 211189, China 2 The 2nd Research Institute of China Electronics Technology Group Corporation, Taiyuan 030024, China 3 The 13th Research Institute of China Electronics Technology Group Corporation, Shijiazhuang 050051, China 4 The 55th Research Institute of China Electronics Technology Group Corporation, Nanjing 210000, China 5 School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China 6 School of Mechanical and Electrical Engineering, Guilin University of Electronic Science and Technology, Guilin 541004, Guangxi, China
Abstract: The semiconductor industry plays a significance role in national defense security and the economic development of a nation. Advanced semiconductor equipment is the key field for foreign technological restrictions on China. Semiconductor devices used in fields such as radar detection and 5G communication have increasingly high performance requirements for high-power, high-frequency, and high response. Currently, these devices face technical bottlenecks such as high interface thermal resistance, high transmission loss, and low integration. Developing ultra-thin interface heterogeneous wafer bonding equipment to significantly reduce bonding interface thermal resistance and improve interconnect bon-ding accuracy is an important way to solve existing technological bottlenecks and improve device performance. However, due to the foreign monopoly of core components and the difficulty of tackling key equipment technologies, there is currently no mature domestic heterogeneous wafer bonding equipment, which seriously restricts the independent innovation and development of China’s new generation semiconductor devices. This paper summarizes the current research status of ultra-thin interface heterogeneous wafer bonding technology and typical processes, and prospectes the development trend of ultra-thin interface heterogeneous wafer bonding technology.
通讯作者:
* 张辉,博士,东南大学机械工程学院教授、博士研究生导师,东南大学微纳声学器件及光声检测实验室主任。目前主要从事声振耦合控制与智能监测、光-声-热多物理场无损检测、跨介质声场调控与声信息传输等相关研究工作。作为负责人主持国家自然科学基金、部委创新研究项目和江苏省重点研发项目等20余项。相关研究成果申请发明专利30余项,在国内外重要学术刊物发表SCI/EI论文100余篇,包括Advanced Functional Materials、Physical Review B、Applied Physics Letters、Journal of the Acoustical Society of America等。 seuzhanghui@seu.edu.cn
1 Li L Y, Lu R. Scheduling and optimation algorithm for cluster tools of wafer fabrication, Publishing House of Electronics Industry, China, 2017, pp.1 (in Chinese). 李林瑛, 卢睿. 集束型晶圆制造装备调度及其优化算法, 电子工业出版社, 2017, pp.1. 2 Lundstrom M. Science, 2003, 299(5604), 210. 3 Kawaura H, Sakamoto T, Baba T. Applied Physics Letters, 2000, 76(25), 3810. 4 Luisier M, Lundstrom M, Antoniadis D A, et al. In: International electron devices meeting (IEDM). Washington, 2011, pp.11. 5 Theis T N, Solomon P M. Science, 2010, 327(5973), 1600. 6 Chau R, Doyle B, Datta S, et al. Nature Materials, 2007, 6(11), 810. 7 Frankin A D. Science, 2015, 349(6249), aab2750. 8 Zhou X G, Tan X, Lv Y J, et al. IEEE Transactions on Electron Devices, 2018, 65(3), 928. 9 Wang Y G, Lv Y J, et al. IEEE Electron Device Letters, 2017, 38(3), 604. 10 Zhou X G, Tan X, Lv Y J, et al. Chinese Physics B, 2021, 30, 028502. 11 Wang Y X, Li G Y, Gu X W, et al. Optics Express, 2022, 30(4), 4919. 12 Li G Y, Niu B, Kong Y C, et al. In: Sixthsymposium on novel optoelectronic detection technology and applications, Beijing, China, 2020, pp.1145551. 13 Inyushkin A V, Taldenkov A N, Ralchenko V G, et al. Physical Review B, 2018, 97(14), 144305 14 Liang J, Kobayashi A, Shimizu Y, Ohno Y, et al. Advanced Materials, 2021, 33(43), e2104564. 15 Mu F, Xu B, Wang X, et al. Journal of Alloys and Compounds, 2022, 905, 164076. 16 Cheng Z, Mu F W, Yates L, et al. ACS Applied Materials & Interfaces, 2020, 12(7), 8376. 17 Yates L, Anderson J, Gu X, et al. ACS Applied Materials & Interfaces, 2018, 10(28), 24302. 18 Cho J, Francis D, Altman D H, et al. Journal of Applied Physics, 2017, 121(5), 055105. 19 Zhou Y, Anaya J, Pomeroy J, et al. ACS Applied Materials & Interfaces, 2017, 9(39), 34416. 20 Sun H R, Simon R B, Pomeroy J W, et al. Applied Physics Letters, 2015, 106(11), 111906. 21 Cho J, Won Y, Francis D, et al. In: 2014 IEEE compound semiconductor integrated circuit symposium (CSICS). LaJolla, 2014, pp.1. 22 Dumka D C, Chou T M, Jimenez J L, et al. In: 2013 IEEE compound semiconductor integrated circuit symposium (CSICS). Monterey, 2013, pp.1. 23 Nochetto H C, Jankowski N R, Barcohen A. In: Proceedings of ASME 2011 international mechanical engineering congress and exposition. Denver, 2012, pp.241. 24 Cho J, Li Z J, Bozorg-Grayeli E, et al. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, 3(1), 79. 25 Lasky J B. Applied Physics Letters, 1986, 48(1), 78. 26 Shimbo M, Furukawa K, Fukuda K, et al. Journal of Applied Physics, 1986, 60(8), 2987. 27 Petersen K, Barth J, Poydock J, et al. In: IEEE technical digest on solid-state sensor and actuator workshop. Hilton Head, 1988, pp.144. 28 Plash T, Hingerl K, Tollabimazr-Aehno S, et al. Journal of Applied Physics, 2013, 113(9), 94905. 29 Bondtech Corporation. http://www. bondtech. co. jp/english/technology. html. 30 Howlader M M R, Yamauchi A, Suga T. Journal of Micromechanics and Microengineering, 2011, 21, 025009 31 Canon Anelva Corporation. https://anelva. canon/en/corporate/library/2019/2019_semicon_europa. html. 32 Takayuki G. Mitsubishi Heavy Industries Technical Review, 2019, 57(3), 1. 33 EVG. http://www. evgroup. com/products/bonding/permanent-bon-ding-systems/combond. 34 Li B, Yi Y, Yang Z C, et al. Chinese Science Bulletion, 2023, 68(14), 1727 (in Chinese). 李博, 尹越, 阳志超, 等. 科学通报, 2023, 68(14), 1727. 35 Bar-Cohen A, Maurer J J, Sivana-Nthan A. MRS Advances, 2016, 1(2), 181 36 Bar-Cohen A, Maurer J J, Altman D H. Journal of Electronic Packaging, 2019, 141(4), 040803. 37 Pomery W J, Uren J M, Lambert B, et al. Microelectronics Reliability, 2015, 55(12), 2505. 38 TechSugar. https://www. eet-china. com/mp/a71682. html (in Chinese). TechSugar. https://www. eet-china. com/mp/a71682. html. 39 Chu K K, Yurovchak T, Chao P C, et al. In:2013 IEEE compound semiconductor integrated circuit symposium (CSICS). Monterey, 2013, pp.1. 40 Du J Y, Tang R, Zhang X Y, et al. Electronics & Packaging, 2023, 23(3), 69 (in Chinese). 杜建宇, 唐睿, 张晓宇, 等. 电子与封装, 2023, 23(3), 69. 41 Felbinger J G, Chandra M V S, Yunju S, et al. IEEE Electron Device Letters, 2007, 28(11), 948. 42 Pomeroy J, Bernardoni M, Sarua A, et al. In: 2013 IEEE compound semiconductor integrated circuit symposium (CSICS). Monterey, 2013, pp.1. 43 Dumka D C, Chou T M, Jimenez J L, et al. In: 2013 IEEE compound semiconductor integrated circuit symposium (CSICS). Monterey, 2013, pp.1. 44 Via G D, Felbinger J G, Blevins J, et al. Physica Status Solidi C, 2014, 11(3-4), 871. 45 Babic D I, Diduck Q, Yenigalla P, et al. In: The 33rd international convention MIPRO. Opatija, 2010, pp.60. 46 Dumka D C, Chou T M, Faili F, et al. Electronics Letters, 2013, 49(20), 1298. 47 Tadjer M J, Anderson T J, Hobart K D, et al. IEEE Electron Device Letters, 2012, 33(1), 23. 48 Fujitsu Limited, Fujitsu Laboratories Limited. https://www. fujitsu. com/global/about/resources/news/press-releases/2019/1205-01. html. 49 Alomari M, Dussaigne A, Martin D, et al. Electronics Letters, 2010, 46(4), 299. 50 Dreumel G W G, Tinnemans P T, Den-Heuvel A A J, et al. Journal of Applied Physics, 2011, 110(1), 013503 51 Dussaigne A, Malinverni M, Martin D, et al. Journal of Crystal Growth, 2009, 311(21), 4539. 52 Webster R F, Cherns D, Kuball M, et al. Semiconductor Science and Technology, 2015, 30(11), 114007. 53 Dussaigne A, Gonschorek M, Malinverni M, et al. Japanese Journal of Applied Physics, 2010, 49(6R), 061001. 54 Hageman P R, Schermer J J, Larsen P K. Thin Solid Films, 2003, 443(1-2), 9. 55 Ahmed R, Siddique A, Anderson J, et al. ACS Applied Materials & Interfaces, 2020, 12(35), 39397. 56 Liau Z L, Mull D E. Applied Physics Letters, 1990, 56(8), 737. 57 Chao P C, Chu K N, Diaz J, et al. MRS Advances, 2016, 1(2), 147. 58 Liu T T, Kong Y C, Wu L S, et al. IEEE Electron Device Letters, 2017, 38(10), 1417. 59 Suga T, Mu F W. In:2020 IEEE 70th Electronic Components and Technology Conference (ECTC). Orlando, 2020, pp.1328. 60 Suga T, Mu F W. In: 2018 19th Internatonal Conference on Electronic Packaging Technology (ICEPT). Shanghai, 2018, pp.521. 61 Mu F W, He R, Suga T. Scripta Materialia, 2018, 150, 148. 62 Eng Z, Mu F W, Yates L, et al. ACS Applied Materials & Interfaces, 2020, 12(7), 8376. 63 Cho J, Li Z J, Bozorg-Grayeli E, et al. IEEE Transactionson Components, Packaging and Manufacturing Technology, 2013, 3(1), 79. 64 Yeghoyan T. Lithography and bonding equipment for more-than-moore 2021, YOLE, France, 2021, pp.24. 65 Chitoraga S, Yeghoyan T, Shoo F. Status of the advanced packaging industry 2022, YOLE, France, 2022, pp.15. 66 Chiu W L, Lee O H, Chiang C W, et al. In: 2021 IEEE 71st Electronic Components and Technology Conference (ECTC). San Diego, 2021, pp.365. 67 Amandine J, Loic S, Clement C, et al. In: 2019 IEEE 69st Electronic Components and Technology Conference (ECTC). Las Vegas, 2019, pp.225.