Please wait a minute...
材料导报  2024, Vol. 38 Issue (24): 23100102-14    https://doi.org/10.11896/cldb.23100102
  无机非金属及其复合材料 |
薄界面异质异构晶圆键合技术研究现状及趋势
王成君1,2, 杨晓东2, 张辉1,*, 周幸叶3, 戴家赟4, 李早阳5, 段晋胜2, 乔丽2, 王广来6
1 东南大学机械工程学院,南京 211189
2 中国电子科技集团公司第二研究所,太原 030024
3 中国电子科技集团公司第十三研究所,石家庄 050051
4 中国电子科技集团公司第五十五研究所,南京 210000
5 西安交通大学能源与动力工程学院,西安 710049
6 桂林电子科技大学机电工程学院,广西 桂林 541004
Research Status and Trends of Ultra-thin Interface Heterogeneous Wafer Bonding Technology
WANG Chengjun1,2, YANG Xiaodong2, ZHANG Hui1,*, ZHOU Xingye3, DAI Jiayun4, LI Zaoyang5, DUAN Jinsheng2, QIAO Li2, WANG Guanglai6
1 School of Mechanical Engineering, Southeast University, Nanjing 211189, China
2 The 2nd Research Institute of China Electronics Technology Group Corporation, Taiyuan 030024, China
3 The 13th Research Institute of China Electronics Technology Group Corporation, Shijiazhuang 050051, China
4 The 55th Research Institute of China Electronics Technology Group Corporation, Nanjing 210000, China
5 School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
6 School of Mechanical and Electrical Engineering, Guilin University of Electronic Science and Technology, Guilin 541004, Guangxi, China
下载:  全 文 ( PDF ) ( 9289KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 半导体产业对国防安全和国民经济发展意义重大,高端半导体装备也是国外对华技术封锁的重点领域。雷达探测、5G通信等领域所用的导体器件对大功率、高频率、高响应等性能要求越来越高,目前该类器件面临界面热阻高、传输损耗大和集成度低等技术瓶颈。开展超薄界面异质异构晶圆键合装备研发,大幅度降低键合界面热阻、提高互连密度和键合精度,是解决当前技术瓶颈、提高器件性能的重要途径。但由于核心零部件被国外垄断、设备整机技术攻关难度大,目前尚无成熟的国产异质异构晶圆键合装备,这就严重制约了我国新一代半导体器件的自主创新发展。本文梳理了超薄界面异质异构晶圆键合技术及典型工艺研究现状,并展望了超薄界面异质异构晶圆键合技术发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王成君
杨晓东
张辉
周幸叶
戴家赟
李早阳
段晋胜
乔丽
王广来
关键词:  晶圆键合  超薄界面  异质异构  直接键合  金刚石基氮化镓微波功率器件    
Abstract: The semiconductor industry plays a significance role in national defense security and the economic development of a nation. Advanced semiconductor equipment is the key field for foreign technological restrictions on China. Semiconductor devices used in fields such as radar detection and 5G communication have increasingly high performance requirements for high-power, high-frequency, and high response. Currently, these devices face technical bottlenecks such as high interface thermal resistance, high transmission loss, and low integration. Developing ultra-thin interface heterogeneous wafer bonding equipment to significantly reduce bonding interface thermal resistance and improve interconnect bon-ding accuracy is an important way to solve existing technological bottlenecks and improve device performance. However, due to the foreign monopoly of core components and the difficulty of tackling key equipment technologies, there is currently no mature domestic heterogeneous wafer bonding equipment, which seriously restricts the independent innovation and development of China’s new generation semiconductor devices. This paper summarizes the current research status of ultra-thin interface heterogeneous wafer bonding technology and typical processes, and prospectes the development trend of ultra-thin interface heterogeneous wafer bonding technology.
Key words:  wafer bonding    ultra-thin interface    heterogeneous    direct bonding    diamond based gallium nitride microwave power device
出版日期:  2024-12-25      发布日期:  2024-12-20
ZTFLH:  TH122  
基金资助: 国家重点研发计划(2022YFB3404300);科工局基础科研项目(JCKY2019210A002)
通讯作者:  * 张辉,博士,东南大学机械工程学院教授、博士研究生导师,东南大学微纳声学器件及光声检测实验室主任。目前主要从事声振耦合控制与智能监测、光-声-热多物理场无损检测、跨介质声场调控与声信息传输等相关研究工作。作为负责人主持国家自然科学基金、部委创新研究项目和江苏省重点研发项目等20余项。相关研究成果申请发明专利30余项,在国内外重要学术刊物发表SCI/EI论文100余篇,包括Advanced Functional Materials、Physical Review B、Applied Physics Letters、Journal of the Acoustical Society of America等。 seuzhanghui@seu.edu.cn   
作者简介:  王成君,2006年7月毕业于陕西科技大学,获得学士学位,2015年12月毕业于太原理工大学。现为东南大学机械工程学院博士研究生,中国电子科技集团公司第二研究所技术专家,高级工程师,在张辉教授的指导下进行研究。目前主要研究领域为先进封装工艺及设备。作为负责人主持包括国家重点研发计划在内的半导体设备相关国家级项目10余项,获得专利30余项。
引用本文:    
王成君, 杨晓东, 张辉, 周幸叶, 戴家赟, 李早阳, 段晋胜, 乔丽, 王广来. 薄界面异质异构晶圆键合技术研究现状及趋势[J]. 材料导报, 2024, 38(24): 23100102-14.
WANG Chengjun, YANG Xiaodong, ZHANG Hui, ZHOU Xingye, DAI Jiayun, LI Zaoyang, DUAN Jinsheng, QIAO Li, WANG Guanglai. Research Status and Trends of Ultra-thin Interface Heterogeneous Wafer Bonding Technology. Materials Reports, 2024, 38(24): 23100102-14.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23100102  或          http://www.mater-rep.com/CN/Y2024/V38/I24/23100102
1 Li L Y, Lu R. Scheduling and optimation algorithm for cluster tools of wafer fabrication, Publishing House of Electronics Industry, China, 2017, pp.1 (in Chinese).
李林瑛, 卢睿. 集束型晶圆制造装备调度及其优化算法, 电子工业出版社, 2017, pp.1.
2 Lundstrom M. Science, 2003, 299(5604), 210.
3 Kawaura H, Sakamoto T, Baba T. Applied Physics Letters, 2000, 76(25), 3810.
4 Luisier M, Lundstrom M, Antoniadis D A, et al. In: International electron devices meeting (IEDM). Washington, 2011, pp.11.
5 Theis T N, Solomon P M. Science, 2010, 327(5973), 1600.
6 Chau R, Doyle B, Datta S, et al. Nature Materials, 2007, 6(11), 810.
7 Frankin A D. Science, 2015, 349(6249), aab2750.
8 Zhou X G, Tan X, Lv Y J, et al. IEEE Transactions on Electron Devices, 2018, 65(3), 928.
9 Wang Y G, Lv Y J, et al. IEEE Electron Device Letters, 2017, 38(3), 604.
10 Zhou X G, Tan X, Lv Y J, et al. Chinese Physics B, 2021, 30, 028502.
11 Wang Y X, Li G Y, Gu X W, et al. Optics Express, 2022, 30(4), 4919.
12 Li G Y, Niu B, Kong Y C, et al. In: Sixthsymposium on novel optoelectronic detection technology and applications, Beijing, China, 2020, pp.1145551.
13 Inyushkin A V, Taldenkov A N, Ralchenko V G, et al. Physical Review B, 2018, 97(14), 144305
14 Liang J, Kobayashi A, Shimizu Y, Ohno Y, et al. Advanced Materials, 2021, 33(43), e2104564.
15 Mu F, Xu B, Wang X, et al. Journal of Alloys and Compounds, 2022, 905, 164076.
16 Cheng Z, Mu F W, Yates L, et al. ACS Applied Materials & Interfaces, 2020, 12(7), 8376.
17 Yates L, Anderson J, Gu X, et al. ACS Applied Materials & Interfaces, 2018, 10(28), 24302.
18 Cho J, Francis D, Altman D H, et al. Journal of Applied Physics, 2017, 121(5), 055105.
19 Zhou Y, Anaya J, Pomeroy J, et al. ACS Applied Materials & Interfaces, 2017, 9(39), 34416.
20 Sun H R, Simon R B, Pomeroy J W, et al. Applied Physics Letters, 2015, 106(11), 111906.
21 Cho J, Won Y, Francis D, et al. In: 2014 IEEE compound semiconductor integrated circuit symposium (CSICS). LaJolla, 2014, pp.1.
22 Dumka D C, Chou T M, Jimenez J L, et al. In: 2013 IEEE compound semiconductor integrated circuit symposium (CSICS). Monterey, 2013, pp.1.
23 Nochetto H C, Jankowski N R, Barcohen A. In: Proceedings of ASME 2011 international mechanical engineering congress and exposition. Denver, 2012, pp.241.
24 Cho J, Li Z J, Bozorg-Grayeli E, et al. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, 3(1), 79.
25 Lasky J B. Applied Physics Letters, 1986, 48(1), 78.
26 Shimbo M, Furukawa K, Fukuda K, et al. Journal of Applied Physics, 1986, 60(8), 2987.
27 Petersen K, Barth J, Poydock J, et al. In: IEEE technical digest on solid-state sensor and actuator workshop. Hilton Head, 1988, pp.144.
28 Plash T, Hingerl K, Tollabimazr-Aehno S, et al. Journal of Applied Physics, 2013, 113(9), 94905.
29 Bondtech Corporation. http://www. bondtech. co. jp/english/technology. html.
30 Howlader M M R, Yamauchi A, Suga T. Journal of Micromechanics and Microengineering, 2011, 21, 025009
31 Canon Anelva Corporation. https://anelva. canon/en/corporate/library/2019/2019_semicon_europa. html.
32 Takayuki G. Mitsubishi Heavy Industries Technical Review, 2019, 57(3), 1.
33 EVG. http://www. evgroup. com/products/bonding/permanent-bon-ding-systems/combond.
34 Li B, Yi Y, Yang Z C, et al. Chinese Science Bulletion, 2023, 68(14), 1727 (in Chinese).
李博, 尹越, 阳志超, 等. 科学通报, 2023, 68(14), 1727.
35 Bar-Cohen A, Maurer J J, Sivana-Nthan A. MRS Advances, 2016, 1(2), 181
36 Bar-Cohen A, Maurer J J, Altman D H. Journal of Electronic Packaging, 2019, 141(4), 040803.
37 Pomery W J, Uren J M, Lambert B, et al. Microelectronics Reliability, 2015, 55(12), 2505.
38 TechSugar. https://www. eet-china. com/mp/a71682. html (in Chinese). TechSugar. https://www. eet-china. com/mp/a71682. html.
39 Chu K K, Yurovchak T, Chao P C, et al. In:2013 IEEE compound semiconductor integrated circuit symposium (CSICS). Monterey, 2013, pp.1.
40 Du J Y, Tang R, Zhang X Y, et al. Electronics & Packaging, 2023, 23(3), 69 (in Chinese).
杜建宇, 唐睿, 张晓宇, 等. 电子与封装, 2023, 23(3), 69.
41 Felbinger J G, Chandra M V S, Yunju S, et al. IEEE Electron Device Letters, 2007, 28(11), 948.
42 Pomeroy J, Bernardoni M, Sarua A, et al. In: 2013 IEEE compound semiconductor integrated circuit symposium (CSICS). Monterey, 2013, pp.1.
43 Dumka D C, Chou T M, Jimenez J L, et al. In: 2013 IEEE compound semiconductor integrated circuit symposium (CSICS). Monterey, 2013, pp.1.
44 Via G D, Felbinger J G, Blevins J, et al. Physica Status Solidi C, 2014, 11(3-4), 871.
45 Babic D I, Diduck Q, Yenigalla P, et al. In: The 33rd international convention MIPRO. Opatija, 2010, pp.60.
46 Dumka D C, Chou T M, Faili F, et al. Electronics Letters, 2013, 49(20), 1298.
47 Tadjer M J, Anderson T J, Hobart K D, et al. IEEE Electron Device Letters, 2012, 33(1), 23.
48 Fujitsu Limited, Fujitsu Laboratories Limited. https://www. fujitsu. com/global/about/resources/news/press-releases/2019/1205-01. html.
49 Alomari M, Dussaigne A, Martin D, et al. Electronics Letters, 2010, 46(4), 299.
50 Dreumel G W G, Tinnemans P T, Den-Heuvel A A J, et al. Journal of Applied Physics, 2011, 110(1), 013503
51 Dussaigne A, Malinverni M, Martin D, et al. Journal of Crystal Growth, 2009, 311(21), 4539.
52 Webster R F, Cherns D, Kuball M, et al. Semiconductor Science and Technology, 2015, 30(11), 114007.
53 Dussaigne A, Gonschorek M, Malinverni M, et al. Japanese Journal of Applied Physics, 2010, 49(6R), 061001.
54 Hageman P R, Schermer J J, Larsen P K. Thin Solid Films, 2003, 443(1-2), 9.
55 Ahmed R, Siddique A, Anderson J, et al. ACS Applied Materials & Interfaces, 2020, 12(35), 39397.
56 Liau Z L, Mull D E. Applied Physics Letters, 1990, 56(8), 737.
57 Chao P C, Chu K N, Diaz J, et al. MRS Advances, 2016, 1(2), 147.
58 Liu T T, Kong Y C, Wu L S, et al. IEEE Electron Device Letters, 2017, 38(10), 1417.
59 Suga T, Mu F W. In:2020 IEEE 70th Electronic Components and Technology Conference (ECTC). Orlando, 2020, pp.1328.
60 Suga T, Mu F W. In: 2018 19th Internatonal Conference on Electronic Packaging Technology (ICEPT). Shanghai, 2018, pp.521.
61 Mu F W, He R, Suga T. Scripta Materialia, 2018, 150, 148.
62 Eng Z, Mu F W, Yates L, et al. ACS Applied Materials & Interfaces, 2020, 12(7), 8376.
63 Cho J, Li Z J, Bozorg-Grayeli E, et al. IEEE Transactionson Components, Packaging and Manufacturing Technology, 2013, 3(1), 79.
64 Yeghoyan T. Lithography and bonding equipment for more-than-moore 2021, YOLE, France, 2021, pp.24.
65 Chitoraga S, Yeghoyan T, Shoo F. Status of the advanced packaging industry 2022, YOLE, France, 2022, pp.15.
66 Chiu W L, Lee O H, Chiang C W, et al. In: 2021 IEEE 71st Electronic Components and Technology Conference (ECTC). San Diego, 2021, pp.365.
67 Amandine J, Loic S, Clement C, et al. In: 2019 IEEE 69st Electronic Components and Technology Conference (ECTC). Las Vegas, 2019, pp.225.
[1] 曾杨武, 庄俊城, 杨楠. 可实现逻辑运算的柔性电路[J]. 材料导报, 2024, 38(24): 23070218-5.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed