Please wait a minute...
材料导报  2025, Vol. 39 Issue (1): 23110101-8    https://doi.org/10.11896/cldb.23110101
  无机非金属及其复合材料 |
碱-矿渣-偏高岭土基地聚物与骨料的界面粘结机理
崔潮1, 李渊1, 党颖泽1, 王岚1,*, 彭晖2
1 内蒙古工业大学内蒙古自治区土木工程结构与力学重点实验室, 呼和浩特 010051
2 长沙理工大学南方地区桥梁长期性能提升技术国家地方联合工程实验室, 长沙 410114
Mechanism of Interface Bonding Between Alkali-Slag-Metakaolin Based Geopolymer and Aggregates
CUI Chao1, LI Yuan1, DANG Yingze1, WANG Lan1,*, PENG Hui2
1 Key Laboratory of Civil Engineering Structure and Mechanics, Inner Mongolia University of Technology, Hohhot 010051, China
2 National-local Joint Engineering Laboratory for Southern Regional Bridge Long-term Performance Improvement Technology, Changsha University of Science & Technology, Changsha 410114, China
下载:  全 文 ( PDF ) ( 30880KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 地聚物混凝土通过碱激发作用形成,其内部碱浓度可以达到水泥的数十倍,因此地聚物的碱骨料反应性能亟待探索。本工作详细探讨了不同配合比条件及骨料种类对碱-矿渣-偏高岭土基地聚物与骨料界面粘结强度的影响,并通过微观分析方法阐述了界面粘结机理。试验结果表明,在激发剂模数为1.2、液固比为0.4的条件下,地聚物与花岗岩、玄武岩以及石灰岩三种骨料均获得了最高的粘结强度。随着碱激发剂模数和液固比的增加,界面粘结强度均逐渐降低,但地聚物与花岗岩的粘结强度受激发剂碱性影响较弱。不同骨料在碱激发剂作用下均会产生溶解反应,溶解出的活性Si、Al以及Ca元素可以在界面处与地聚物进一步进行地聚合反应提高界面过渡区(Interfacial transition zone,ITZ)的密实程度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔潮
李渊
党颖泽
王岚
彭晖
关键词:  地聚物  骨料  界面过渡区  粘结强度  粘结机理    
Abstract: Geopolymer concrete, formed through alkaline activation, has an internal alkaline concentration of dozens times higher than that of cement. Therefore, the reaction properties between geopolymers and aggregates need to be explored further. This work discussed in detail the influence of different mix ratios and aggregate types on the interface bonding strength of the alkali-slag-metakaolin based geopolymer and aggregate . Microscopic analysis methods were used to elucidate the interface bonding mechanism. The experimental results showed that under the conditions of an alkali module of 1.2, and a liquid-to-solid ratio of 0.4, the samples with granite, basalt, and limestone respectively got the highest bonding strength. As the modulus of the alkaline activator and the liquid-to-solid ratio increased, the bonding strength of the interface decreased gradually;however, the bond strength between the geopolymer and granite was not significantly affected by the alkalinity of the activator. Under the action of the alkaline activator, three kinds of aggregates underwent dissolution reactions, and the dissolved active Si, Al, and Ca elements should react with the geopolymer further at the interface, which should improve the compactness of the ITZ.
Key words:  geopolymer    aggregate    interface transition zone    bonding strength    bonding mechanism
出版日期:  2025-01-10      发布日期:  2025-01-10
ZTFLH:  TU528.41  
基金资助: 国家自然科学基金(52368035)
通讯作者:  *王岚,博士,内蒙古工业大学教授、博士研究生导师。目前从事道路材料方向的研究。发表论文100余篇,授权专利10余项。15647944539@163.com   
作者简介:  崔潮,博士,内蒙古工业大学土木工程学院副教授,主要研究领域为面向道路工程的地聚物的研发与应用。
引用本文:    
崔潮, 李渊, 党颖泽, 王岚, 彭晖. 碱-矿渣-偏高岭土基地聚物与骨料的界面粘结机理[J]. 材料导报, 2025, 39(1): 23110101-8.
CUI Chao, LI Yuan, DANG Yingze, WANG Lan, PENG Hui. Mechanism of Interface Bonding Between Alkali-Slag-Metakaolin Based Geopolymer and Aggregates. Materials Reports, 2025, 39(1): 23110101-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23110101  或          https://www.mater-rep.com/CN/Y2025/V39/I1/23110101
1 Huang D, Chen P, Peng H, et al. Construction and Building Materials, 2021, 305, 124760.
2 Cai, B, Wang, J, et al. Applied Energy, 2016, 166, 191.
3 Chen P, Shi Z, Cao S, et al. Journal of Cleaner Production, 2022, 359, 132136.
4 Ayaz Ahmad, Waqas Ahmad, Fahid Aslam, et al. Case Studies in Construction Materials, 2022, 16, e00840.
5 Turner L K, Collins F G. Construction and Building Materials, 2013, 43, 125.
6 Joseph Davidovits. Journal of Thermal Analysis and Calorimetry, 1991, 37(8), 1633.
7 Kong Y K, Kurumisawa K. Journal of Building Engineering, 2023, 75, 106830.
8 Tian Z, Zhang Z, Tang X, et al. Construction and Building Materials, 2023, 385, 131404.
9 San N R, Provis J L. Frontiers in Materials, 2015, 2, 70.
10 Peng H, Cui C, Cai C S, et al. Construction and Building Materials, 2019, 221(10), 263.
11 Kasım Mermerdaş, Soran Manguri, et al. Engineering Science and Technology, 2017, 20(6), 1642.
12 Li W, Luo Z, Gan Y, et al. Composites Science and Technology, 2021, 214(29), 109001.
13 Wang Qing, Zhou Baoyu, Ding Zhaoyang, et al. Concrete, 2009(12), 48(in Chinese).
王晴, 周宝玉, 丁兆洋, 等. 混凝土, 2009(12), 48.
14 Pacheco-Torgal F, Castro-Gomes J, Jalali S. Cement and Concrete Research, 2007, 37(6), 933.
15 Lee W K W, Deventer J. Cement and Concrete Research, 2004, 34(2), 195.
16 Lee W K W, Deventer J. Cement and Concrete Research, 2007, 37(6), 844.
17 Qiu Zhiming, Bao Shenxu. Journal of Building Engineering, 2023, 76, 107363.
18 Fatheali A S, Sharanabasava V. Materials Letters, 2022, 309, 131302.
19 Manjusha Muraleedharan, Yashida Nadir. Ceramics International, 2021, 47(10), 13257.
20 Zhou Chenlin, Zhong Zhengqiang, Peng Hui, et al. Journal of Transportation Science and Engineering, 2022, 38(2), 82(in Chinese).
周晨林, 钟正强, 彭晖, 等. 交通科学与工程, 2022, 38(2), 82.
21 Durak U, Karahan O, Uzal B, et al. Structural Concrete, 2021, 22, E352.
22 Yuan B, Yu Q L, Brouwers H J H. Materials and Structures, 2017, 50, 136.
23 Assaedi H. Composite Interfaces, 2021, 28(5), 527.
24 Liu X Y, Sriramya D. Journal of Petroleum Science and Engineering, 2020, 195, 107555.
25 Bayiha B N, Billong N, Yamb E, et al. Construction and Building Materials. 2019, 217, 28.
26 Escalante-Garcia J I, Perez-Cortes P. Cement and Concrete Research, 2020, 137, 106211.
27 Zhao X, Liu C, Zuo L, et al. Cement and Concrete Composites, 2019, 103, 279.
28 Walkley B, Provis J L, San Nicolas R, et al. Advances in Applied Ceramics, 2015, 114(7), 372.
29 Criado M, Palomo A, Fernández-Jiménez A. Fuel, 2005, 84(16), 2048.
30 Bernal S A, Provis J L, Walkley B, et al. Cement and Concrete Research, 2013, 53, 127.
31 Susan A B, Rackel S N, Rupert J M, et al. Cement and Concrete Research, 2014, 57, 33.
32 El Didamony H, Assal H H, El Sokkary T M, et al. HBRC Journal, 2012, 8(3), 170.
33 Valérie Daux, Christophe Guy, et al. Chemical Geology, 1997, 142(1-2), 109.
34 Deng Yifan. Study on water in fly ash geopolymers and the interfacial transition zone of their concrete. Master's Thesis, Changsha University of Science & Technology, China, 2017(in Chinese).
邓怡帆. 粉煤灰地聚合物中的水及其混凝土界面过渡区研究. 硕士学位论文, 长沙理工大学, 2017.
[1] 夏晋, 郑宇航, 汪雨青. 基于多尺度模型的混凝土有效电阻率与几何代表尺寸研究[J]. 材料导报, 2025, 39(4): 24020001-7.
[2] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[3] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[4] 吴子豪, 苏荣华, 马超, 解帅, 冀志江, 王英翔, 王静. 轻骨料水泥基多功能吸波材料的制备及有限元分析[J]. 材料导报, 2024, 38(5): 23080253-7.
[5] 朱本清, 余红发, 巩旭, 吴成友, 麻海燕. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5): 22070190-7.
[6] 张白, 彭晖, 杨致远. 海水干湿循环作用下地聚物基珊瑚骨料混凝土力学性能的研究[J]. 材料导报, 2024, 38(23): 23090081-9.
[7] 郑建岚, 王雅思, 陈僖, 张旺城. 含氯再生骨料混凝土中钢筋抗锈蚀性能试验研究[J]. 材料导报, 2024, 38(22): 23110219-7.
[8] 黄鹏宇, 周永祥, 冷发光, 贺阳, 孔亚宁, 杨文, 高育欣. 同级配下高碳铬铁渣骨料对混凝土性能的影响研究[J]. 材料导报, 2024, 38(22): 23090192-7.
[9] 于乐乐, 王爱国, 仲小凡, 刘开伟, 潘耀辉, 肖必华, 孙道胜. 煤矸石骨料混凝土力学和耐久性能研究进展[J]. 材料导报, 2024, 38(20): 23080244-9.
[10] 张雪芹, 马昆林, 龙广成, 曾晓辉, 唐卓, 谢友均, 刘宝举. 粗骨料形态特征表征参数及其与混凝土性能关系的研究进展[J]. 材料导报, 2024, 38(2): 22060263-12.
[11] 崔涛涛, 宁宝宽, 郜殿伟, 夏旭东. 混杂纤维高强轻骨料混凝土单轴受压试验研究[J]. 材料导报, 2024, 38(2): 22040204-6.
[12] 许应杰, 陈红鸟. 长龄期机制砂再生骨料混凝土的断裂参数和断裂过程区[J]. 材料导报, 2024, 38(19): 23040205-10.
[13] 郑建岚, 王晓敏, 张建全. 含氯再生骨料混凝土抗氯离子渗透性能的研究[J]. 材料导报, 2024, 38(18): 23050208-6.
[14] 胡家宇, 徐菲, 钱文勋, 肖怀前, 葛津宇, 李嘉明. 涂覆时间对聚合物水泥基钢筋涂层粘接性能的影响机理[J]. 材料导报, 2024, 38(17): 22060053-4.
[15] 李长志, 周新斌, 魏世恭, 马昆林, 于连山, 邹卫东. 粗骨料形态特征差异及其与堆积空隙率关系的研究[J]. 材料导报, 2024, 38(17): 23030064-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed