Fracture Parameters and Fracture Process Zone of Long-age Manufactured-sand Recycled Aggregate Concrete
XU Yingjie1,2, CHEN Hongniao1,2,3,4,*
1 Research Center of Space Structures, Guizhou University, Guiyang 550025, China 2 College of Civil Engineering, Guizhou University, Guiyang 550025, China 3 Key Laboratory of Structural Engineering of Guizhou Province, Guiyang 550025, China 4 Key Laboratory of Rock and Soil Mechanics and Engineering Safety of Guizhou Province, Guiyang 550025, China
Abstract: To study the effect of age on the fracture mechanism of manufactured-sand recycled aggregate concrete (MSRAC), the fracture parameters and fracture process zone (FPZ) of MSRAC at 28 d and 300 d were studied using digital image correlation technique, and the fracture behavior and toughening mechanism of MSRAC were compared and analyzed. The results indicate that the nominal stiffness, fracture energy, initial fracture toughness and unstable fracture toughness of MSRAC are significantly improved with increasing age, the interaction between local micro-crack and macro-crack also increase significantly. However, the failure characteristics of long-age MSRAC are more rapid and violent, its brittleness increases significantly during the softening stage. In addition, the FPZ width and area of the MSRAC increase with age during unstable crack propagation, while the FPZ length is opposite. When the FPZ is fully developed, the FPZ length of MSRAC decreases with age and the FPZ width increases with age, while the FPZ area is insensitive to age. Compared with the 28 d MSRAC, the long-aged MSRAC has a stronger aggregate interlocking effect, and its secondary crack and damage range are also more obvious.
1 Wang B, Yan L B, Fu Q N, et al. Resources, Conservation and Recycling, 2021, 171, 105565. 2 Akhtar A, Sarmah A K. Journal of Cleaner Production, 2018, 186, 262. 3 Kabirifar K, Mojtahedi M, Wang C X, et al. Journal of Cleaner Production, 2020, 263, 121265. 4 Meyer C. Cement and Concrete Composites, 2009, 31(8), 601. 5 Rentier E S, Science of the Total Environment, 2022, 838, 155877. 6 Srivastava A, Singh S K. Journal of Cleaner Production, 2020, 253, 119706. 7 Gavriletea M. Sustainability, 2017, 9(7), 1118. 8 Ganesh M S, Jagadeesh P. Materials Today: Proceedings, 2022, 64, 1029. 9 Xiao J Z, Wang C H, Ding T, et al. Journal of Cleaner Production, 2018, 199, 868. 10 Shen W G, Yang Z G, Cao L H, et al. Construction and Building Materials, 2016, 114, 595. 11 Shen W G, Liu Y, Wang Z W, et al. Construction and Building Materials, 2018, 172, 574. 12 Shen W G, Liu Y, Cao L H, et al. Construction and Building Materials, 2017, 143, 312. 13 Nanthagopalan P, Santhanam M. Cement and Concrete Composites, 2011, 33(3), 353. 14 Kim J K, Lee C S, Park C K, et al. Cement & Concrete Research, 1997, 27(11), 1719. 15 Major breakthrough in high strength and high performance technology of guizhou rock sand concrete. Concrete, 2019(12), 172(in Chinese). 贵州山砂混凝土高强高性能技术获重大突破. 混凝土, 2019(12), 172. 16 Li H J, Wang Z, Huang F L, et al. Construction and Building Materials, 2020, 230, 116943. 17 Lin L X. Sichuan Building Science, 2010, 36(3), 188(in Chinese). 林力勋. 四川建筑科学研究, 2010, 36(3), 188. 18 Xiao J Z, Li W G, Fan Y H, et al. Construction and Building Materials, 2012, 31, 364. 19 Guo H, Shi C J, Guan X M, et al. Cement and Concrete Composites, 2018, 89, 251. 20 Xu S L. Fracture mechanics of concrete, Science Press, China, 2011(in Chinese). 徐世烺. 混凝土断裂力学, 科学出版社, 2011. 21 Xu S L, Dong L X, Wang B W, et al. Journal of Hydraulic Engineering, 2014, 45(S1), 1 (in Chinese). 徐世烺, 董丽欣, 王冰伟 等, 水利学报, 2014, 45(S1), 1. 22 Xiao J Z, Tang Y X, Chen H N, et al. Journal of Cleaner Production, 2022, 366, 132895. 23 Ghorbel E, Wardeh G. Construction and Building Materials, 2017, 154, 51. 24 Guo M H, Alam S Y, Bendimerad A Z, et al. Engineering Fracture Mechanics, 2017, 181, 101. 25 Li T, Xiao J Z, Zhang Y M, et al. Cement and Concrete Composites, 2019, 104, 103353. 26 Luan S G, Darwin D. Journal of Hydraulic Engineering, 1999(10), 29(in Chinese). 栾曙光, David Darwin. 水利学报, 1999(10), 29. 27 Gholampour A, Ozbakkaloglu T. Engineering Structures, 2018, 157, 224. 28 Li W N, Zhan D H, Xu J J, et al. Applied Mechanics and Materials, 2012, 174-177, 1051. 29 Kou S C, Poon C S, Etxeberria M. Cement and Concrete Composites, 2011, 33(2), 286. 30 Xu Y J, Chen H N, Tang Y X. Construction and Building Materials, 2022, 361, 129613. 31 Xie Y D, Qian C X, Xu Y G, et al. Construction and Building Materials, 2022, 323, 126633. 32 中华人民共和国住房和城乡建设部. 钻芯法检测混凝土强度技术规程: JGJ/T 384-2016, 中国建筑工业出版社, 2011. 33 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 混凝土用再生骨料:GB/T 25177-2010, 中国标准出版社, 2010. 34 国家市场监督管理总局, 国家标准化管理委员会. 建设用砂: GB/T 14684-2022, 中国标准出版社, 2022. 35 国家市场监督管理总局, 国家标准化管理委员会. 建设用卵石、碎石: GB/T 14685-2022, 中国标准出版社, 2022. 36 Wu K Y, Luo S R, Zheng J L. Engineering Mechanics, 2022, 39(3), 147(in Chinese). 吴恺云, 罗素蓉, 郑建岚. 工程力学, 2022, 39(3), 147. 37 Tam V W Y, Tam C M. Construction and Building Materials, 2008, 22(10), 2068. 38 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 混凝土物理力学性能试验方法标准 : GB/T 50081-2019, 中国建筑工业出版社, 2019. 39 Bhowmik S, Ray S. Engineering Fracture Mechanics, 2019, 211, 401. 40 Chen W, Yang H F. Structural Concrete, 2020, 22(S1), 48. 41 Jenq Y, Shah S P. Journal of Engineering Mechanics, 1985, 111(10), 1227. 42 Dilbas H, Cakir O, Yildirim H. Construction and Building Materials, 2020, 252, 119118. 43 Alam S Y, Loukili A. International Journal of Solids and Structures, 2020, 182-183, 34. 44 Khalilpour S, BaniAsad E, Dehestani M. Cement and Concrete Research, 2019, 120, 294. 45 Rilem T C. Materials and Structures, 1985, 18(6), 484. 46 Xiao J Z, Li W G, Sun Z H, et al. ACI Materials Journal, 2012, 109(4), 451. 47 Xu S L, Reinhardt H W. International Journal of Fracture, 2000, 104(2), 181. 48 Xu S L, Li Q H, Wu Y, et al. Materials and Structures, 2021, 54(6), 220. 49 Chen W, Peng L X, Yang H F. Journal of Building Engineering, 2021, 35, 102040. 50 Wang X F, Xiao X D, Fang J J, et al. Journal of Building Materials, 2018, 21(6), 977(in Chinese). 王雪芳, 肖祥栋, 方金杰, 等. 建筑材料学报, 2018, 21(6), 977. 51 Wu Z M, Wu X, Zheng J J, et al. Magazine of Concrete Research, 2014, 66(14), 719. 52 Wu Z M, Rong H, Zheng J J, et al. Engineering Fracture Mechanics, 2011, 78(17), 2978. 53 Hillerborg A, Modéer M, Petersson P E. Cement and Concrete Research, 1976, 6(6), 773. 54 Dong W, Wu Z M, Zhou X M. Construction and Building Materials, 2013, 38, 879. 55 CEB-90-1991, Committee Euro-International du Beton, 1991. 56 Petersson P E. Report TVBM-1006, 1981. 57 Robert L, Nazaret F, Cutard T, et al. Experimental Mechanics, 2007, 47(6), 761. 58 Wang H W, Wu Z M, Wang Y J, et al. Theoretical and Applied Fracture Mechanics, 2019, 100, 328. 59 Bretschneider N, Slowik V, Villmann B, et al. Engineering Fracture Mechanics, 2011, 78(17), 2896.