Please wait a minute...
材料导报  2024, Vol. 38 Issue (19): 23040205-10    https://doi.org/10.11896/cldb.23040205
  无机非金属及其复合材料 |
长龄期机制砂再生骨料混凝土的断裂参数和断裂过程区
许应杰1,2, 陈红鸟1,2,3,4,*
1 贵州大学空间结构研究中心,贵阳 550025
2 贵州大学土木工程学院,贵阳 550025
3 贵州省结构工程重点实验室,贵阳 550025
4 贵州省岩土力学与工程安全重点实验室,贵阳 550025
Fracture Parameters and Fracture Process Zone of Long-age Manufactured-sand Recycled Aggregate Concrete
XU Yingjie1,2, CHEN Hongniao1,2,3,4,*
1 Research Center of Space Structures, Guizhou University, Guiyang 550025, China
2 College of Civil Engineering, Guizhou University, Guiyang 550025, China
3 Key Laboratory of Structural Engineering of Guizhou Province, Guiyang 550025, China
4 Key Laboratory of Rock and Soil Mechanics and Engineering Safety of Guizhou Province, Guiyang 550025, China
下载:  全 文 ( PDF ) ( 25837KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究龄期对机制砂再生骨料混凝土(Manufactured-sand recycled aggregate concrete,MSRAC)断裂机理的影响,采用数字图像相关技术对28 d和300 d龄期的MSRAC的断裂参数和断裂过程区(Fracture process zone,FPZ)进行研究,并对比分析了MSRAC的断裂行为和增韧机制。结果表明,随着龄期延长,MSRAC的名义刚度、断裂能、起裂断裂韧度和失稳断裂韧度得到明显改善,其局部微裂纹和宏观裂纹的相互作用也明显增加,但长龄期MSRAC的失效特征更加迅速和剧烈,软化阶段的脆性显著增加。此外,在裂纹失稳扩展时,MSRAC的FPZ宽度和面积随着龄期延长而增加,FPZ长度则相反。在FPZ完全扩展时,MSRAC的 FPZ长度随龄期延长而降低,FPZ宽度则相反,FPZ面积是不敏感的。相比28 d龄期的MSRAC,长龄期的MSRAC具有更加强烈的骨料联锁效应,其次生裂纹和损伤范围也更加明显和宽广。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许应杰
陈红鸟
关键词:  再生骨料混凝土  机制砂  长龄期  断裂参数  断裂过程区    
Abstract: To study the effect of age on the fracture mechanism of manufactured-sand recycled aggregate concrete (MSRAC), the fracture parameters and fracture process zone (FPZ) of MSRAC at 28 d and 300 d were studied using digital image correlation technique, and the fracture behavior and toughening mechanism of MSRAC were compared and analyzed. The results indicate that the nominal stiffness, fracture energy, initial fracture toughness and unstable fracture toughness of MSRAC are significantly improved with increasing age, the interaction between local micro-crack and macro-crack also increase significantly. However, the failure characteristics of long-age MSRAC are more rapid and violent, its brittleness increases significantly during the softening stage. In addition, the FPZ width and area of the MSRAC increase with age during unstable crack propagation, while the FPZ length is opposite. When the FPZ is fully developed, the FPZ length of MSRAC decreases with age and the FPZ width increases with age, while the FPZ area is insensitive to age. Compared with the 28 d MSRAC, the long-aged MSRAC has a stronger aggregate interlocking effect, and its secondary crack and damage range are also more obvious.
Key words:  recycled aggregate concrete    manufactured sand    long age    fracture parameter    fracture process zone
出版日期:  2024-10-10      发布日期:  2024-10-23
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51768011;52278251);贵州省科技计划重点项目(黔科合基础-ZK[2022]重点 007)
通讯作者:  *陈红鸟,通信作者,贵州大学空间结构研究中心教授、博士研究生导师。2013年香港大学土木工程专业博士毕业。目前主要从事准脆性材料的损伤与断裂力学研究,发表论文70余篇。hqchen@gzu.edu.cn   
作者简介:  许应杰,贵州大学空间结构研究中心和土木工程学院博士研究生,在陈红鸟教授的指导下进行研究。目前主要从事再生骨料混凝土的断裂力学研究。
引用本文:    
许应杰, 陈红鸟. 长龄期机制砂再生骨料混凝土的断裂参数和断裂过程区[J]. 材料导报, 2024, 38(19): 23040205-10.
XU Yingjie, CHEN Hongniao. Fracture Parameters and Fracture Process Zone of Long-age Manufactured-sand Recycled Aggregate Concrete. Materials Reports, 2024, 38(19): 23040205-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040205  或          http://www.mater-rep.com/CN/Y2024/V38/I19/23040205
1 Wang B, Yan L B, Fu Q N, et al. Resources, Conservation and Recycling, 2021, 171, 105565.
2 Akhtar A, Sarmah A K. Journal of Cleaner Production, 2018, 186, 262.
3 Kabirifar K, Mojtahedi M, Wang C X, et al. Journal of Cleaner Production, 2020, 263, 121265.
4 Meyer C. Cement and Concrete Composites, 2009, 31(8), 601.
5 Rentier E S, Science of the Total Environment, 2022, 838, 155877.
6 Srivastava A, Singh S K. Journal of Cleaner Production, 2020, 253, 119706.
7 Gavriletea M. Sustainability, 2017, 9(7), 1118.
8 Ganesh M S, Jagadeesh P. Materials Today: Proceedings, 2022, 64, 1029.
9 Xiao J Z, Wang C H, Ding T, et al. Journal of Cleaner Production, 2018, 199, 868.
10 Shen W G, Yang Z G, Cao L H, et al. Construction and Building Materials, 2016, 114, 595.
11 Shen W G, Liu Y, Wang Z W, et al. Construction and Building Materials, 2018, 172, 574.
12 Shen W G, Liu Y, Cao L H, et al. Construction and Building Materials, 2017, 143, 312.
13 Nanthagopalan P, Santhanam M. Cement and Concrete Composites, 2011, 33(3), 353.
14 Kim J K, Lee C S, Park C K, et al. Cement & Concrete Research, 1997, 27(11), 1719.
15 Major breakthrough in high strength and high performance technology of guizhou rock sand concrete. Concrete, 2019(12), 172(in Chinese).
贵州山砂混凝土高强高性能技术获重大突破. 混凝土, 2019(12), 172.
16 Li H J, Wang Z, Huang F L, et al. Construction and Building Materials, 2020, 230, 116943.
17 Lin L X. Sichuan Building Science, 2010, 36(3), 188(in Chinese).
林力勋. 四川建筑科学研究, 2010, 36(3), 188.
18 Xiao J Z, Li W G, Fan Y H, et al. Construction and Building Materials, 2012, 31, 364.
19 Guo H, Shi C J, Guan X M, et al. Cement and Concrete Composites, 2018, 89, 251.
20 Xu S L. Fracture mechanics of concrete, Science Press, China, 2011(in Chinese).
徐世烺. 混凝土断裂力学, 科学出版社, 2011.
21 Xu S L, Dong L X, Wang B W, et al. Journal of Hydraulic Engineering, 2014, 45(S1), 1 (in Chinese).
徐世烺, 董丽欣, 王冰伟 等, 水利学报, 2014, 45(S1), 1.
22 Xiao J Z, Tang Y X, Chen H N, et al. Journal of Cleaner Production, 2022, 366, 132895.
23 Ghorbel E, Wardeh G. Construction and Building Materials, 2017, 154, 51.
24 Guo M H, Alam S Y, Bendimerad A Z, et al. Engineering Fracture Mechanics, 2017, 181, 101.
25 Li T, Xiao J Z, Zhang Y M, et al. Cement and Concrete Composites, 2019, 104, 103353.
26 Luan S G, Darwin D. Journal of Hydraulic Engineering, 1999(10), 29(in Chinese).
栾曙光, David Darwin. 水利学报, 1999(10), 29.
27 Gholampour A, Ozbakkaloglu T. Engineering Structures, 2018, 157, 224.
28 Li W N, Zhan D H, Xu J J, et al. Applied Mechanics and Materials, 2012, 174-177, 1051.
29 Kou S C, Poon C S, Etxeberria M. Cement and Concrete Composites, 2011, 33(2), 286.
30 Xu Y J, Chen H N, Tang Y X. Construction and Building Materials, 2022, 361, 129613.
31 Xie Y D, Qian C X, Xu Y G, et al. Construction and Building Materials, 2022, 323, 126633.
32 中华人民共和国住房和城乡建设部. 钻芯法检测混凝土强度技术规程: JGJ/T 384-2016, 中国建筑工业出版社, 2011.
33 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 混凝土用再生骨料:GB/T 25177-2010, 中国标准出版社, 2010.
34 国家市场监督管理总局, 国家标准化管理委员会. 建设用砂: GB/T 14684-2022, 中国标准出版社, 2022.
35 国家市场监督管理总局, 国家标准化管理委员会. 建设用卵石、碎石: GB/T 14685-2022, 中国标准出版社, 2022.
36 Wu K Y, Luo S R, Zheng J L. Engineering Mechanics, 2022, 39(3), 147(in Chinese).
吴恺云, 罗素蓉, 郑建岚. 工程力学, 2022, 39(3), 147.
37 Tam V W Y, Tam C M. Construction and Building Materials, 2008, 22(10), 2068.
38 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 混凝土物理力学性能试验方法标准 : GB/T 50081-2019, 中国建筑工业出版社, 2019.
39 Bhowmik S, Ray S. Engineering Fracture Mechanics, 2019, 211, 401.
40 Chen W, Yang H F. Structural Concrete, 2020, 22(S1), 48.
41 Jenq Y, Shah S P. Journal of Engineering Mechanics, 1985, 111(10), 1227.
42 Dilbas H, Cakir O, Yildirim H. Construction and Building Materials, 2020, 252, 119118.
43 Alam S Y, Loukili A. International Journal of Solids and Structures, 2020, 182-183, 34.
44 Khalilpour S, BaniAsad E, Dehestani M. Cement and Concrete Research, 2019, 120, 294.
45 Rilem T C. Materials and Structures, 1985, 18(6), 484.
46 Xiao J Z, Li W G, Sun Z H, et al. ACI Materials Journal, 2012, 109(4), 451.
47 Xu S L, Reinhardt H W. International Journal of Fracture, 2000, 104(2), 181.
48 Xu S L, Li Q H, Wu Y, et al. Materials and Structures, 2021, 54(6), 220.
49 Chen W, Peng L X, Yang H F. Journal of Building Engineering, 2021, 35, 102040.
50 Wang X F, Xiao X D, Fang J J, et al. Journal of Building Materials, 2018, 21(6), 977(in Chinese).
王雪芳, 肖祥栋, 方金杰, 等. 建筑材料学报, 2018, 21(6), 977.
51 Wu Z M, Wu X, Zheng J J, et al. Magazine of Concrete Research, 2014, 66(14), 719.
52 Wu Z M, Rong H, Zheng J J, et al. Engineering Fracture Mechanics, 2011, 78(17), 2978.
53 Hillerborg A, Modéer M, Petersson P E. Cement and Concrete Research, 1976, 6(6), 773.
54 Dong W, Wu Z M, Zhou X M. Construction and Building Materials, 2013, 38, 879.
55 CEB-90-1991, Committee Euro-International du Beton, 1991.
56 Petersson P E. Report TVBM-1006, 1981.
57 Robert L, Nazaret F, Cutard T, et al. Experimental Mechanics, 2007, 47(6), 761.
58 Wang H W, Wu Z M, Wang Y J, et al. Theoretical and Applied Fracture Mechanics, 2019, 100, 328.
59 Bretschneider N, Slowik V, Villmann B, et al. Engineering Fracture Mechanics, 2011, 78(17), 2896.
[1] 郑建岚, 王雅思, 陈僖, 张旺城. 含氯再生骨料混凝土中钢筋抗锈蚀性能试验研究[J]. 材料导报, 2024, 38(22): 23110219-7.
[2] 肖民, 吴娟, 奚健杨, 李方贤, 祝雯, 韦江雄. 基于Mazars损伤模型评价不同粗糙度机制砂砂浆的抗裂性能[J]. 材料导报, 2024, 38(21): 23060117-6.
[3] 边晨, 郭君渊, 肖建庄, 赵长军. 纳米偏高岭土及细骨料对UHPC力学性能的影响[J]. 材料导报, 2023, 37(23): 22070261-5.
[4] 韩照, 张云升, 乔宏霞, 冯琼, 薛翠真, 尚明刚. 基于CT扫描及图像处理技术的机制砂形貌研究[J]. 材料导报, 2023, 37(19): 22060032-6.
[5] 胡时, 蔡海兵, 马祖桥, 袁助, 丁祖德. 不同加载速率下饱水高延性喷射混凝土的单轴压缩试验[J]. 材料导报, 2022, 36(8): 21090227-10.
[6] 盛鹰, 贾彬, 王汝恒, 陈国平. 基于内聚力模型的复合裂纹耦合扩展多尺度数值模拟研究与实验验证[J]. 材料导报, 2022, 36(4): 20110172-10.
[7] 张广田, 刘娟红, 孔丽娟, 吴瑞东. 石英岩型铁尾矿机制砂中石粉的吸附特性及机理[J]. 材料导报, 2021, 35(6): 6071-6077.
[8] 高育欣, 刘明, 曾超, 王福涛, 王鹏, 叶子, 张磊. 机制砂表面改性技术研究与应用[J]. 材料导报, 2021, 35(22): 22072-22078.
[9] 于本田, 刘通, 王焕, 李盛, 谢超, 苏磊, 李彦林. 机制砂中片状颗粒对水泥胶砂性能的影响[J]. 材料导报, 2021, 35(14): 14058-14064.
[10] 褚洪岩, 蒋金洋, 李荷, 夏广林. 环保型细集料对超高性能混凝土力学性能的影响[J]. 材料导报, 2020, 34(24): 24029-24033.
[11] 胡俊, 王杰, 李兆瑞, 吴德义. 基于随机骨料模型的EPS混凝土粒子尺寸效应分析[J]. 材料导报, 2018, 32(18): 3146-3153.
[12] 张广田,刘娟红,隋宝龙,陈朝阳. 硅质机制砂改性剂的机理研究与应用[J]. 《材料导报》期刊社, 2017, 31(24): 56-62.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed