Please wait a minute...
材料导报  2021, Vol. 35 Issue (14): 14058-14064    https://doi.org/10.11896/cldb.20020161
  无机非金属及其复合材料 |
机制砂中片状颗粒对水泥胶砂性能的影响
于本田1,2,3,*, 刘通1, 王焕2, 李盛1, 谢超1, 苏磊4, 李彦林4
1 兰州交通大学土木工程学院,兰州 730070
2 中铁十四局集团有限公司,济南 250014
3 西南交通大学土木工程学院,成都 610031
4 铁正检测科技有限公司,济南 250014
Properties of Cement Mortar with Flake Particle in Manufactured Sand
YU Bentian1,2,3,*, LIU Tong1, WANG Huan2, LI Sheng1, XIE Chao1, SU Lei4, LI Yanlin4
1 School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2 China Railway 14th Bureau Group Co., Ltd., Jinan 250014, China
3 School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
4 Tiezheng Testing Technology Co., Ltd., Jinan 250014, China
下载:  全 文 ( PDF ) ( 5175KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用条形孔筛分法得到不同粒径的片状机制砂颗粒,在保证颗粒级配不变的情况下,测试了机制砂中组合粒径的片状颗粒含量为10%、20%和30%与粒径为1.18~2.36 mm、2.36~4.75 mm和4.75~9.50 mm单粒径的片状颗粒含量为10%时的水泥胶砂流动度、抗折及抗压强度、孔结构特征。结果表明:随着机制砂中片状颗粒含量的增加或片状颗粒含量为10%时,所含片状颗粒粒径越大,机制砂空隙率就越大,配制的水泥胶砂孔隙率也越大,有害孔增多,导致水泥胶砂流动度、抗折与抗压强度明显降低。灰色关联分析表明,片状颗粒含量是影响水泥胶砂性能的关键因子,其次是4.75~9.50 mm单粒径片状颗粒的含量。为保证水泥胶砂的性能,应严格控制机制砂中片状颗粒总含量及4.75~9.50 mm片状颗粒的含量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于本田
刘通
王焕
李盛
谢超
苏磊
李彦林
关键词:  机制砂  片状颗粒  水泥胶砂  流动度  强度  孔结构  灰色关联分析    
Abstract: Obtaining the different size flake particles from manufactured sand using bar-shaped sieve method, under the condition that the gradation of manufactured sand remained unchanged, the fluidity, flexural strength, compressive strength and pore structure characteristics of cement mortars were tested when the content of the combined particle size of the flake particles in the manufactured sand is 10%, 20%, and 30%, and the content of single flake particle size is 10% with the particle size of 1.18—2.36 mm, 2.36—4.75 mm, and 4.75—9.50 mm respectively. The experimental results show that with the increase of the particle size of the flake particles, the porosity of the manufactured sand increases, the porosity of the prepared cement mortar increases, and the number of harmful pores increases, which results in fluidity, flexural and compressive strength of cement mortar reduce obviously, when the content of flake particles in manufactured sand is increased or the content of flake particles is 10%. Grey correlation analysis shows that the content of flake particles is the most critical factor affecting cement mortar, and the single particle size of 4.75—9.50 mm is the second factor affecting cement mortar. In order to ensure the performance of cement sand, the total content of flake particles in the manufactured sand and the content of 4.75—9.50 mm flake particles should be strictly controlled.
Key words:  manufactured sand    flake particles    cement mortar    fluidity    strength    pore structure    grey correlation analysis
               出版日期:  2021-07-25      发布日期:  2021-08-03
ZTFLH:  TU521.1  
基金资助: 中国铁路总公司科技研究开发计划(P2018G004);长江学者和创新团队发展计划(IRT_15R29)
通讯作者:  * yubentian@mail.lzjtu.cn   
作者简介:  于本田,兰州交通大学副教授。2014年12月毕业于兰州交通大学,获土木工程博士学位。目前在兰州交通大学土木工程学院工作,主持和参与国家自然科学基金面上项目、甘肃省自然科学基金项目等多个省部级以上项目10项。研究方向主要为高性能混凝土的研发与制备、混凝土材料与结构耐久性。在国内外期刊发表文章30多篇。
引用本文:    
于本田, 刘通, 王焕, 李盛, 谢超, 苏磊, 李彦林. 机制砂中片状颗粒对水泥胶砂性能的影响[J]. 材料导报, 2021, 35(14): 14058-14064.
YU Bentian, LIU Tong, WANG Huan, LI Sheng, XIE Chao, SU Lei, LI Yanlin. Properties of Cement Mortar with Flake Particle in Manufactured Sand. Materials Reports, 2021, 35(14): 14058-14064.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20020161  或          http://www.mater-rep.com/CN/Y2021/V35/I14/14058
1 Xu J, Cai J W, Wang J L, et al. Science and Technology of Overseas Building Materials,2004,25(3),20(in Chinese).
徐健,蔡基伟,王稷良,等.国外建材科技,2004,25(3),20.
2 Ji T, Li F, Zhuang Y Z, et al. Concrete,2011(2),80(in Chinese).
季韬,李锋,庄一舟,等.混凝土,2011(2),80.
3 Song S M, Guo D. Concrete,2015(12),60(in Chinese).
宋少民,郭丹.混凝土,2015(12),60.
4 Xiong K, Xi H P, Hong Y S. Jiangxi Building Materials,2015(12),160(in Chinese).
熊珂,习海平,洪一粟.江西建材,2015(12),160.
5 Shen W G, Liu Y, Wang Z W, et al. Construction and Building Mate-rials,2018,172,574.
6 Shen W G, Yang Z G, Cao L H, et al. Construction and Building Materials,2016,114,595.
7 Wang J L, Yang Z F, Liu Y H. Journal of Wuhan University of Technology (Materials Science Edition),2014,29(6),1213.
8 Zeng X H, Dai Y P, Qu F L, et al. Journal of Southwest Jiaotong University,2017,52(1),69(in Chinese).
曾晓辉,戴亚鹏,瞿福林,等.西南交通大学学报,2017,52(1),69.
9 Ai C F, Peng H, Hu C, et al. Concrete,2013(1),73(in Chinese).
艾长发,彭浩,胡超,等.混凝土,2013(1),73.
10 Liu F H, Chen X L. Sichuan Building Science,2012,38(3),252(in Chinese).
刘凤翰,陈晓玲.四川建筑科学研究,2012,38(3),252.
11 Dong C, Feng C, Yang J B, et al. China concrete and cement products,2019(11),21(in Chinese).
董超,冯晨,杨进波,等.混凝土与水泥制品,2019(11),21.
12 Christetuscn B J, Mason T O. Cement and Concrete Research,1996,26(9),1325.
13 Liu Z, Wnslow D. Cement and Concrete Research,1995,25(4),769.
14 Wu Z W, Lian H Z. High performance concrete, China Railway Publi-shing House CO., Ltd, China,1999(in Chinese).
吴中伟,廉惠珍.高性能混凝土,中国铁道出版社,1999.
15 Deng J L. Grey control system, Huazhong University of Science and Technology Press, China,1985(in Chinese).
邓聚龙.灰色控制系统,华中工学院出版社,1985.
[1] 鲁明远, 韩保红, 赫万恒, 倪新华, 于金凤. 孔隙对陶瓷基复合材料强度影响的研究进展[J]. 材料导报, 2021, 35(Z1): 180-185.
[2] 叶强. 工业固废制备透水砖及其孔结构研究进展[J]. 材料导报, 2021, 35(Z1): 274-278.
[3] 于芳, 晁代义, 邢雷, 王欣, 黄同瑊, 王向杰. 单级时效工艺对7075铝合金包覆薄板力学性能的影响[J]. 材料导报, 2021, 35(Z1): 411-413.
[4] 黄同瑊, 晁代义, 于芳, 张芮源, 周艳艳, 赵晓红, 徐志远. 保温时间对2024包铝薄板元素扩展及力学性能的影响[J]. 材料导报, 2021, 35(Z1): 421-424.
[5] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[6] 丁叁叁, 刘克健. 高速列车用碳纤维复合材料结构损伤修复门槛值研究[J]. 材料导报, 2021, 35(Z1): 613-616.
[7] 张鹏居, 钱钊, 刘相法. Al-B-C晶种合金对6201铝合金导热及力学性能的作用机理分析[J]. 材料导报, 2021, 35(9): 9028-9032.
[8] 代金芯, 石宵爽, 王清远, 张红恩, 栾晨晨, 张宽裕, 杨富花. 多因素对再生复合掺料基地聚物混凝土抗压强度的影响[J]. 材料导报, 2021, 35(9): 9077-9082.
[9] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[10] 金贺荣, 张钊瑞, 韩民峰, 井士涛, 赵丁选. 表面粗糙度对热轧不锈钢复合板界面质量的影响[J]. 材料导报, 2021, 35(8): 8151-8156.
[11] 李东宇, 李小强, 李京懋, 屈盛官, 徐各清. 烧结工艺对铜铁基含油轴承组织与性能的影响[J]. 材料导报, 2021, 35(8): 8157-8163.
[12] 石玉, 李正宁, 盛捷, 喇培清. 纳米高强钢铁材料增塑研究进展[J]. 材料导报, 2021, 35(7): 7155-7161.
[13] 马驰, 王连慧, 潘崇祥, 刘紫婷, 王娜, 史颖. 泡孔聚合物压电材料的研究进展[J]. 材料导报, 2021, 35(7): 7199-7204.
[14] 张广田, 刘娟红, 孔丽娟, 吴瑞东. 石英岩型铁尾矿机制砂中石粉的吸附特性及机理[J]. 材料导报, 2021, 35(6): 6071-6077.
[15] 王凯伟, 曾凯, 刑保英, 易金权. DP780高强钢胶接点焊过程声发射信号特征及接头强度预测[J]. 材料导报, 2021, 35(6): 6157-6160.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed