Please wait a minute...
材料导报  2021, Vol. 35 Issue (8): 8151-8156    https://doi.org/10.11896/cldb.20020029
  金属与金属基复合材料 |
表面粗糙度对热轧不锈钢复合板界面质量的影响
金贺荣1,2, 张钊瑞3, 韩民峰3, 井士涛3, 赵丁选3
1 燕山大学先进锻压成型技术与科学教育部重点试验室,秦皇岛 066004
2 燕山大学河北省并联机器人与机电系统试验室,秦皇岛 066004
3 燕山大学机械工程学院,秦皇岛 066004
Effect of Surface Roughness on Interface Quality of Hot Rolled Stainless Steel Clad Plate
JIN Herong1,2, ZHANG Zhaorui3, HAN Minfeng3, JING Shitao3, ZHAO Dingxuan3
1 Key Laboratory of Advanced Forging and Stamping Technology and Science of Ministry of National Education, Yanshan University, Qinhuangdao 066004, China
2 Parallel Robot and Mechatronic System Laboratory of Hebei Province, Yanshan University, Qinhuangdao 066004, China
3 School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
下载:  全 文 ( PDF ) ( 8825KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究板坯表面粗糙度对不锈钢复合板界面特性的影响,基于MSC.Marc软件建立了复合板界面非共节点热轧三维热力耦合模型,分析了双金属间摩擦因数对轧制变形区界面黏接特点的影响规律,同时进行了不同表面粗糙度板坯的热轧试验及性能评估试验。研究结果表明,随着双金属间摩擦因数的增大,轧制变形区内的黏接现象越早发生;较大的板坯表面粗糙度抑制了界面碳元素的扩散,同时也容易导致界面产生夹杂物和孔洞等缺陷。拉剪试验表明,粗糙度Ra=7.6 μm的复合板的剪切强度最高,达到384.81 MPa,Ra=1.6 μm的复合板的剪切强度为365.85 MPa,两种拉剪试样均为韧性断口。Ra=15.6 μm的复合板由于界面存在孔洞缺陷,发生了脆性断裂,拉剪强度最低,为321.74 MPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金贺荣
张钊瑞
韩民峰
井士涛
赵丁选
关键词:  不锈钢复合板  有限元模型  表面粗糙度  剪切强度    
Abstract: In order to study the influence of slab surface roughness on the interface quality of stainless steel clad plate, a 3D thermal-force-coupled finite element model for hot rolling forming of non-co-nodes of stainless steel composite plates was established based on MSC.Marc software. The effect of friction coefficient between bimetals on the interface adhesion characteristics of the rolling deformation zone of composite plates were studied. At the same time, hot rolling tests and performance evaluation tests of slabs with different surface roughness were carried out. The results show that when the friction coefficient between bimetals increases, the earlier the bimetal bonding occurs in the rolling deformation zone. The larger surface roughness of slab inhibits the diffusion of carbon elements at the interface, but it is also more likely to cause the formation of interfacial compounds and holes. The results of tension shear test show that the shear strength of clad plate with Ra=7.6 μm is the highest, reaching 384.81 MPa, and that of clad plate with Ra=1.6 μm is 365.85 MPa. Both samples of tension-shear are ductile fracture. For the clad plate with Ra=15.6 μm, due to the hole defects in the interface, brittle fracture occurs, with the lowest tensile-shear strength of 321.74 MPa.
Key words:  stainless steel clad plate    finite element model    surface roughness    shear strength
               出版日期:  2021-04-25      发布日期:  2021-05-10
ZTFLH:  TG335.81  
基金资助: 国家自然科学基金委员会-宝钢集团有限公司钢铁联合研究(U1660111);河北省自然科学基金-高端钢铁冶金(E2020203033)
通讯作者:  ysujhr@ysu.edu.cn   
作者简介:  金贺荣,燕山大学博士生导师,中国工程机械学会会员,铲土运输机械分会和特大型工程运输车辆分会理事。2002年9月至2007年6月,在燕山大学获得机械设计及理论专业工学学士学位和检测技术与仪器专业工学博士学位,毕业后留校任教。以第一作者在国内外学术期刊上发表论文60余篇,申请国家发明专利60余项,其中授权30项。并担任多个学术期刊的审稿人。研究工作主要围绕国家重点发展的先进金属材料,开展关于极端条件下双金属复合成形机理与性能评价方法研究,主持包括国家自然科学基金项目、河北省高等学校科学技术研究项目及河北省自然基金钢铁联合研究基金项目等。
引用本文:    
金贺荣, 张钊瑞, 韩民峰, 井士涛, 赵丁选. 表面粗糙度对热轧不锈钢复合板界面质量的影响[J]. 材料导报, 2021, 35(8): 8151-8156.
JIN Herong, ZHANG Zhaorui, HAN Minfeng, JING Shitao, ZHAO Dingxuan. Effect of Surface Roughness on Interface Quality of Hot Rolled Stainless Steel Clad Plate. Materials Reports, 2021, 35(8): 8151-8156.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20020029  或          http://www.mater-rep.com/CN/Y2021/V35/I8/8151
1 Liu B X, Yin F X, Dai X L, et al. Materials Science and Engineering A,2017,679,172.
2 Song H, Shin H, Shin Y. Ocean Engineering,2016,122,278.
3 Liu B X, An Q, Yin F X, et al. Journal of Materials Science,2019,54(17),11357.
4 Jamaati R, Toroghinejad M R. Journal of Materials Engineering & Performance,2011,20(2),191.
5 Li L, Zhang X J, Liu H Y, et al. Journal of Iron and Steel Research,2013,25(1),43(in Chinese).
李龙,张心金,刘会云,等.钢铁研究学报,2013,25(1),43.
6 Jiang W C, Liu Z B, Gong J M, et al. International Journal of Pressure Vessels and Piping,2010,87(8),457.
7 Kang Y H, Liu Y L, He Y H. Journal of Mechanical Strength,2012,34(3),445(in Chinese).
康煜华,刘义伦,何玉辉.机械强度,2012,34(3),455.
8 Lin Z C, Huang T G. Journal of Materials Processing Technology,2000,99(1),154.
9 Sun C, Li L, Zhou D J. Materials Reports A: Review Papers,2017,31(6),59(in Chinese).
孙畅,李龙,周德敬.材料导报:综述篇,2017,31(6),59.
10 Zhang X P, Yang T H, Castagne S, et al. Materials and Design,2011,32(4),2239.
11 Wang H, Cheng X R, Fu S Y, et al. Forging & Stamping Technology,2016,41(4),19(in Chinese).
王浩,程晓茹,付松岳,等.锻压技术,2016,41(4),19.
12 Liu J X, Zhao A M, Jiang H T, et al. International Journal of Minerals Metallurgy and Materials,2012,19(5),404.
13 Manesh H D, Shahabi H S. Journal of Alloys and Compounds,2009,476(1-2),290.
14 Xie H B, Wang D W, Yu C, et al. Iron and Steel,2017,52(12),48(in Chinese).
谢红飙,王德蔚,余超,等.钢铁,2017,52(12),48.
15 Luo Z A, Wang G L, Xie G M, et al. The Chinese Journal of Nonferrous Metals,2013,23(12),3335(in Chinese).
骆宗安,王光磊,谢广明,等.中国有色金属学报,2013,23(12),3335.
16 Jing Y A, Qin Y, Zang X M, et al. Journal of Alloys and Compounds,2014,617,688.
17 Jing Y A, Qin Y, Zang X M, et al. Journal of Materials Processing Technology,2014,214(8),1686.
18 Chen L S, Zhang X L, Zheng X P, et al. Rare Metal Materials and Engineering,2018,47(10),329(in Chinese).
陈连生,张鑫磊,郑小平,等.稀有金属材料与工程,2018,47(10),329.
19 Yang S T, Zhao J S, Ouyang X R, et al. Nonferrous Metals Processing,2013,42(3),5(in Chinese).
杨松涛,赵景申,欧阳向荣,等.2013,42(3),5.
20 Qin Q, Zhang D T, Zang Y, et al. Advances in Mechanical Engineering,2015,7(7),1.
[1] 金鑫源, 兰亮, 何博, 朱奥迪, 高双. 选区激光熔化成形金属零件表面粗糙度研究进展[J]. 材料导报, 2021, 35(3): 3168-3175.
[2] 张松, 杨静, 胥永刚, 张明月. 仿SIMA法钎焊对Mn-Cu合金与430不锈钢接头组织及性能的影响[J]. 材料导报, 2020, 34(8): 8126-8130.
[3] 秦翔, 杨军, 邹德宁, 谢燕翔. 选区激光熔化线能量对Inconel718涂层组织结构及性能的影响[J]. 材料导报, 2020, 34(4): 4093-4097.
[4] 成烨, 还大军, 李勇, 刘洪全, 周洲. AS4D/PEEK热塑性复合材料激光固结缠绕工艺参数优化[J]. 材料导报, 2020, 34(22): 22190-22194.
[5] 梁静静, 张相召, 赵光辉, 刘桂武, 邵海成, 乔冠军. 磨削加工对Al2O3陶瓷表面质量与力学性能的影响[J]. 材料导报, 2020, 34(16): 16020-16024.
[6] 肖丰强, 王东坡, 胡文彬, 崔雷, 高志明, 周兰聚. 终轧温度对2205/Q235B双相不锈钢复合板组织和性能的影响[J]. 材料导报, 2020, 34(16): 16119-16124.
[7] 马英怡, 刘玉德, 石文天, 韩冬, 侯岩军. 芳纶纤维增强复合材料的微铣削与铣磨精加工[J]. 材料导报, 2020, 34(16): 16177-16181.
[8] 肖长江, 窦志强, 朱振东. 氧化铁刻蚀金刚石表面形貌的表征及形成机理[J]. 材料导报, 2020, 34(14): 14045-14050.
[9] 孙书兵, 刘艳松, 何小珊, 王锋, 何智兵, 黄景林, 刘磊. 空心微球上Al-W多层涂层的制备与表征[J]. 材料导报, 2018, 32(24): 4297-4302.
[10] 万永强,胡小武,徐涛,李玉龙,江雄心. Cu/Sn37Pb/Cu钎焊接头界面微观结构及其剪切性能[J]. 《材料导报》期刊社, 2018, 32(12): 2003-2007.
[11] 刘发齐, 关志东, 边天涯. 三维编织复合材料紧固件剪切强度预报[J]. 《材料导报》期刊社, 2017, 31(7): 121-128.
[12] 陈自鹏, 石少卿, 罗伟铭, 孙建虎, 范兰心. 高密度聚乙烯材料在大变形条件下的数值模拟研究*[J]. 《材料导报》期刊社, 2017, 31(20): 135-139.
[13] 王毅, 王盼, 索红莉, 贾强, 卢东琪, 李怀洲, 吴海明. 哈氏合金电化学抛光工艺的研究*[J]. 《材料导报》期刊社, 2017, 31(2): 37-40.
[14] 王鹏, 高增, 李锦竹, 程东锋, 徐冬霞, 牛济泰. 高体积比SiCp/6063Al复合材料的铝基钎料制备及钎焊工艺研究*[J]. 《材料导报》期刊社, 2017, 31(2): 69-72.
[15] 杨斌, 陈剑明, 邬善江, 李明茂, 张建波. Sn-58Bi-(0~3)Ga/Cu润湿剪切性能及界面化合物的研究*[J]. 《材料导报》期刊社, 2017, 31(14): 92-95.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed