Please wait a minute...
材料导报  2020, Vol. 34 Issue (16): 16119-16124    https://doi.org/10.11896/cldb.19070210
  金属与金属基复合材料 |
终轧温度对2205/Q235B双相不锈钢复合板组织和性能的影响
肖丰强1,2,3, 王东坡1,2, 胡文彬1, 崔雷1,2, 高志明1, 周兰聚4
1 天津大学材料科学与工程学院,天津 300350;
2 天津市现代连接技术重点实验室,天津 300350;
3 山东省高新技术创业投资有限公司,济南 250101;
4 山东钢铁集团有限公司,济南 250101
Effect of Final Rolling Temperature on Microstructure and Properties of 2205/Q235B Duplex Stainless Steel Clad Plate
XIAO Fengqiang1,2,3, WANG Dongpo1,2, HU Wenbin1, CUI Lei1,2, GAO Zhiming1, ZHOU Lanju4
1 School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China;
2 Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300350, China;
3 Shandong High-Tech Investment Corporation, Jinan 250101, China;
4 Shandong Iron & Steel Group Co., Ltd., Jinan 250101, China
下载:  全 文 ( PDF ) ( 7736KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作以2205双相不锈钢和Q235B低碳钢为研究对象,采用Gleeble3800热模拟实验机将其压缩为复合板,并通过光学显微镜(OM)、扫描电镜(SEM)、力学及电化学性能测试仪器研究了终轧温度对2205/Q235B双相不锈钢复合板显微组织、剪切强度和耐腐蚀性能的影响规律。结果表明,在压下率一定的条件下,终轧温度在850~970 ℃范围内,2205和Q235B均能得到良好的结合界面,靠近复合界面的2205侧形成了一个奥氏体长条带,Q235B侧形成了宽度39.1~47.4 μm的脱碳区域。随着终轧温度的降低,2205/Q235B双相不锈钢复合钢板的剪切强度显著提高,终轧温度为850 ℃时剪切强度最高,达到445 MPa。随着终轧温度的升高,2205双相不锈钢中δ铁素体含量逐渐增加,970 ℃时,δ铁素体含量达到最大值45.3%,2205不锈钢表面的耐腐蚀性能最佳。但随着终轧温度的升高,2205/Q235B结合界面处碳钢侧腐蚀深坑宽度由35.56 μm增大到49.44 μm,应注意腐蚀防护。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖丰强
王东坡
胡文彬
崔雷
高志明
周兰聚
关键词:  2205/Q235B复合板  终轧温度  铁素体  极化曲线  剪切强度    
Abstract: Based on the 2205 duplex stainless steel and Q235B mild steel as the research object, the Gleeble3800 hot simulation experiment machine was used to compress them into a clad plate. The influence law of the final rolling temperature on the microstructure, shear strength and corrosion resistance of the 2205/Q235B duplex stainless steel clad plate was investigated by the optical microscope (OM), scanning electron microscope (SEM), mechanical and electrochemical performance testing. The results showed that, under the certain reduction ratio, 2205 and Q235B could obtain a good bonding interface when the final rolling temperature was within the range of 850—970 ℃. A long austenitic strip was formed on the side of 2205 near the interface, and the decarburization zone with width of 39.1—47.4 μm was formed on the side of Q235B. With the decrease of the final rolling temperature, the shear strength of 2205/Q235B duplex stainless steel clad plate was significantly increased. When the final rolling temperature was 850 ℃, its shear strength was the highest, reaching 445 MPa. With the increase of the final rolling temperature, the δ ferritic content of 2205 duplex stainless steel was increased gradually. The δ ferritic content of the 2205 stainless steel reached the maximum value of 45.3% at 970 ℃, thus leading to the best corrosion resistance of the surface. However, with the increase of the final rolling temperature, the corrosion pit width of carbon steel side at the interface of 2205/Q235B increased from 35.56 μm to 49.44 μm. Therefore, the corrosion protection of the cross-section should be paid attention to.
Key words:  2205/Q235B clad steel plate    final rolling temperature    ferrite    polarization curve    shear strength
               出版日期:  2020-08-25      发布日期:  2020-07-24
ZTFLH:  TG335.81  
基金资助: 山东省泰山产业领军人才工程项目(SF1503302301)
通讯作者:  wangdp@tju.edu.cn   
作者简介:  肖丰强,2007年7月毕业于北京科技大学,获得材料学硕士学位。于2014年9月至今在天津大学材料科学与工程学院学习,主要从事双相不锈钢复合板的制备及其搅拌摩擦焊接工艺研究。
王东坡,天津大学材料科学与工程学院,教授。2000年1月毕业于天津大学,材料加工工程专业博士。主要从事焊接结构断裂与强度研究工作,针对航空航天、石油天然气输送管道、海上钻井平台、高速轨道车辆等领域开展了一系列基础理论及应用技术研究。在国内外重要期刊发表文章220篇,申请专利80余项。
引用本文:    
肖丰强, 王东坡, 胡文彬, 崔雷, 高志明, 周兰聚. 终轧温度对2205/Q235B双相不锈钢复合板组织和性能的影响[J]. 材料导报, 2020, 34(16): 16119-16124.
XIAO Fengqiang, WANG Dongpo, HU Wenbin, CUI Lei, GAO Zhiming, ZHOU Lanju. Effect of Final Rolling Temperature on Microstructure and Properties of 2205/Q235B Duplex Stainless Steel Clad Plate. Materials Reports, 2020, 34(16): 16119-16124.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070210  或          http://www.mater-rep.com/CN/Y2020/V34/I16/16119
1 Li L, Zhang X J, Liu H Y, et al. Steel Rolling, 2013, 30(3), 43(in Chinese).
李龙, 张心金, 刘会云, 等. 轧钢, 2013, 30(3), 43.
2 Ding H M, Fan X L, Wang J F, et al. Transactions of Materials and Heat Treatment, 2011, 32(11),18(in Chinese).
丁海民, 范孝良, 王进峰, 等. 材料热处理学报, 2011, 32(11),18.
3 Zina D, Noamen G, Monique G, et al. Materials Science & Engineering A, 2016, 656, 130.
4 Xie G M, Luo Z A, Wang G L, et al. Journal of Northeastern University (Natural Science), 2011, 32(10), 1398(in Chinese).
谢广明, 骆宗安, 王光磊, 等. 东北大学学报(自然科学版), 2011, 32(10),1398.
5 Li L, Zhang X J, Zhu Z C, et al. Journal of Materials and Metallurgy, 2014, 13(1), 46(in Chinese).
李龙,张心金,祝志超,等. 材料与冶金学报, 2014, 13(1),46.
6 Chen S H. Effect of rolling process parameters on interface bonding strength of stainless steel/carbon steel composite plate. Master’s Thesis, Taiyuan University of Science and Technology, China, 2014(in Chinese).
陈少航. 轧制工艺参数对不锈钢/碳钢复合板界面结合强度的影响. 硕士学位论文, 太原科技大学, 2014.
7 Wu W. Baosteel Technical Research, 2018, 11(2),25.
8 Bai Y Q, Huang W, Wang Z Z, et al. Materials for Mechanical Engineering, 2012, 36(12),33(in Chinese).
白允强, 黄文, 王章忠, 等. 机械工程材料, 2012, 36(12),33.
9 Dong K. Microstructure analysis of 2205/Q235 hot rolling bonding interface and duplex stainless steel. Master’s Thesis, Yanshan University, China, 2017(in Chinese).
董珂. 2205/Q235热轧复合界面与不锈钢基体微观结构分析. 硕士学位论文, 燕山大学, 2017.
10 Harbin Welding Institute, Tianjin Bridge Welding Materials Group Co.,Ltd., Tianjin Golden Bridge Welding Materials Group Co.,Ltd., et al. Method for measurement of ferritic content in weld seams of chrome-nickel austenitic stainless steel, Standardization Administration of China, 2008(in Chinese).
哈尔滨焊接研究所, 天津大桥焊材集团有限公司, 天津市金桥焊材集团有限公司, 等. 铬镍奥氏体不锈钢焊缝铁素体含量测量方法,国家标准化管理委员会,2008.
11 Standard reference test method for making potentiostatic and potentiodynamic anodic polarization measurements, American Society for Testing and Materials, USA,2014.
12 Standard test method for conducting potentiodynamic polarization resistance measurements, American Society for Testing and Materials, USA,2014.
13 Shanxi Taiyuan Stainless Steel Co.,Ltd., Metallurgical Information and Standardization Research Institute. Stainless steel composite plate and steel strip, Standardization Administration of China, 2008(in Chinese).
山西太钢不锈钢股份有限公司, 冶金工业信息标准研究院. 不锈钢复合钢板和钢带, 国家标准化管理委员会,2008.
14 Ma M, Ding H, Tang Z Y, et al. Journal of Northeastern University(Na-tural Science), 2014, 35(4),504(in Chinese).
马明, 丁桦, 唐正友, 等. 东北大学学报(自然科学版), 2014, 35(4),504.
15 Shi S K, Wang J, Li H F, et al. Corrosion Science and Protection Technology, 2011,23(6),463(in Chinese).
石树冲, 王均, 李海丰, 等. 腐独科学与防护技术, 2011,23(6),463.
[1] 王鹏, 张卫刚, 孙旭东. 锆在硫酸提浓工艺中的腐蚀研究[J]. 材料导报, 2020, 34(Z1): 385-389.
[2] 唐伍实秋, 王斌, 江明晏, 周椤, 叶洋呈. 锆合金表面氟化物-磷酸盐预镀层的制备及对化学镀层性能的影响[J]. 材料导报, 2020, 34(Z1): 390-394.
[3] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[4] 张松, 杨静, 胥永刚, 张明月. 仿SIMA法钎焊对Mn-Cu合金与430不锈钢接头组织及性能的影响[J]. 材料导报, 2020, 34(8): 8126-8130.
[5] 秦翔, 杨军, 邹德宁, 谢燕翔. 选区激光熔化线能量对Inconel718涂层组织结构及性能的影响[J]. 材料导报, 2020, 34(4): 4093-4097.
[6] 李慧莹, 赵君文, 戴光泽, 韩靖, 李旭嘉. 钼酸钠含量对无铬锌铝涂层性能的影响[J]. 材料导报, 2020, 34(2): 2105-2109.
[7] 谭騛, 宁兆祥, 许晓嫦, 任鹏禾, 陈广兴. 新型渣浆泵用材料的腐蚀性能研究[J]. 材料导报, 2019, 33(24): 4157-4163.
[8] 张建斌, 刘帆, 薛飞. 热处理工艺对P91耐热钢中δ-铁素体和冲击性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1318-1322.
[9] 杨贵荣, 宋文明, 王建儒, 张玉福, 王富强, 马颖. 添加碳化钨和石墨改善真空熔覆Ni-Co基合金涂层的极化行为[J]. 材料导报, 2018, 32(6): 924-929.
[10] 郭思文, 邵媛, 古正富, 任国富, 张华光. 锌含量对铝基可降解合金降解速率的影响[J]. 材料导报, 2018, 32(6): 947-950.
[11] 万永强,胡小武,徐涛,李玉龙,江雄心. Cu/Sn37Pb/Cu钎焊接头界面微观结构及其剪切性能[J]. 《材料导报》期刊社, 2018, 32(12): 2003-2007.
[12] 谢飞, 王丹, 吴明, 宗月, 袁世娇, 申红娟, 李睿. 海洋硫酸盐还原菌对Q235钢腐蚀行为的影响*[J]. 《材料导报》期刊社, 2017, 31(8): 51-55.
[13] 刘发齐, 关志东, 边天涯. 三维编织复合材料紧固件剪切强度预报[J]. 《材料导报》期刊社, 2017, 31(7): 121-128.
[14] 董洁, 袁守谦, 杨双平, 孙永涛, 高海龙, 陈春江. 电脉冲对铸态高韧性球墨铸铁凝固组织及性能的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 44-47.
[15] 王鹏, 高增, 李锦竹, 程东锋, 徐冬霞, 牛济泰. 高体积比SiCp/6063Al复合材料的铝基钎料制备及钎焊工艺研究*[J]. 《材料导报》期刊社, 2017, 31(2): 69-72.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed