Please wait a minute...
材料导报  2020, Vol. 34 Issue (2): 2105-2109    https://doi.org/10.11896/cldb.19010102
  金属与金属基复合材料 |
钼酸钠含量对无铬锌铝涂层性能的影响
李慧莹1, 赵君文1,2, 戴光泽1,2, 韩靖1, 李旭嘉1
1 西南交通大学材料科学与工程学院,成都 610031
2 扬州丰泽轨道交通科技有限公司,扬州 225200
Impact of Sodium Molybdate Content on Properties of Chromium-free Zinc-Aluminum Coatings
LI Huiying1, ZHAO Junwen1,2, DAI Guangze1,2, HAN Jing1, LI Xujia1
1 School of Materials Science and Engineering,Southwest Jiaotong University,Chengdu 610031,China
2 Yangzhou Fengze Rail Technologies Co. Ltd.,Yangzhou 225200,China
下载:  全 文 ( PDF ) ( 7113KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了钼酸钠(缓蚀剂)含量变化对无铬锌铝涂层形貌、成分、孔隙率、附着力及耐蚀性能的影响。采用SEM、EDS对涂层的形貌、孔隙率和成分进行分析,采用附着力测试仪对涂层附着力进行评价,通过极化曲线、交流阻抗谱测试对涂层耐蚀性进行分析。在钼酸钠质量分数为1.3%~2.6%时,所得涂层宏观上均光滑、平整且呈现出银灰色金属光泽;微观上均完整、致密、孔隙率低,鳞片状锌铝粉层层堆叠,形成了良好的物理屏蔽作用。在钼酸钠质量分数为1.3%~2.2%时,涂层的附着力等级为ISO-1级,但更高的钼酸钠含量使涂层的附着力水平下降。随着钼酸钠含量的增加,涂层的自腐蚀电位先减小后增大,在钼酸钠含量达2.6%后,涂层的自腐蚀电位因高于Q235钢基体而无法为其提供阴极保护。涂层的自腐蚀电流在9.141×10-6~1.176×10-4 A/cm2范围变化,Rf值(锌铝粉表面膜层电阻)在212.1~649.5 Ω·cm2范围变化。在钼酸钠质量分数为1.8%时,涂层的综合性能最佳,涂层的自腐蚀电流密度最小,仅9.141×10-6 A/cm2,Rf值最大达649.5 Ω·cm2,锌铝粉表面腐蚀产物膜层最为致密,且结合力高,耐蚀性能最好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李慧莹
赵君文
戴光泽
韩靖
李旭嘉
关键词:  钼酸钠  无铬锌铝涂层  附着力  极化曲线  交流阻抗谱  耐蚀性    
Abstract: In this study, we sought to find out the alterations in morphology, composition, porosity, adhesion and corrosion resistance of chromium-free zinc-aluminum coatings caused by variation of sodium molybdate (inhibitor) content. Specifically, SEM and EDS was adopted to characterize the morphology, porosity and composition of the coatings. The adhesion of the coatings was evaluated by adhesion tester. The corrosion resis-tance of the coatings were analyzed based on polarization curves and electrochemical impedance spectroscopy. When 1.3wt%~2.6wt% sodium molybdate was contained, the coatings were glossy and smooth with silver-gray metallic luster in appearance. Meanwhile, the coatings were complete and compact with low porosity according to the microscopic observation, and the sheet-like zinc-aluminum powders stacked layer by la-yer, forming an effective physical shielding. When the content of sodium molybdate ranged from 1.3wt% to 2.2wt%, the adhesion of coatings leveled ISO-1. While higher sodium molybdate content would do harm to the adhesion of the coatings. As the sodium molybdate content increased, the self-corrosion potential of the coatings first dropped and then went up. When the content of sodium molybdate exceeded 2.6wt%, the coating held a self-corrosion potential higher than Q235 steel matrix, and failed to provide cathodic protection for the matrix. Furthermore, the self-corrosion current of the coatings varied in the range of 9.141×10-6—1.176×10-4 A/cm2, and the Rf value (the resistance of zinc-aluminum powders surface film layer) varied in the range of 212.1—649.5 Ω·cm2. The coatings achieved the best comprehensive performance under the sodium molybdate content of 1.8wt%. In this case, the coating exhibited the minimum self-corrosion current density of only 9.141×10-6 A/cm2, and the highest Rf value of 649.5 Ω·cm2. As a result, the corrosion product film on the surface of zinc-aluminum powders was the most compact, with strong adhesion and optimal corrosion resistance.
Key words:  sodium molybdate    chromium-free zinc-aluminum coating    adhesion    polarization curves    electrochemical impedance spectroscopy    corrosion resistance
               出版日期:  2020-01-25      发布日期:  2020-01-03
ZTFLH:  TG178  
基金资助: 国家科技支撑计划项目(2015BAG12B01);汽车高性能材料及成形技术四川省高校重点实验室开放项目(szjj2017-019)
通讯作者:  swjtuzjw@swjtu.cn   
作者简介:  李慧莹,硕士生,主要研究方向为材料腐蚀与防护;赵君文,博士,副教授,主要研究方向为轨道交通金属材料加工及服役性能。
引用本文:    
李慧莹, 赵君文, 戴光泽, 韩靖, 李旭嘉. 钼酸钠含量对无铬锌铝涂层性能的影响[J]. 材料导报, 2020, 34(2): 2105-2109.
LI Huiying, ZHAO Junwen, DAI Guangze, HAN Jing, LI Xujia. Impact of Sodium Molybdate Content on Properties of Chromium-free Zinc-Aluminum Coatings. Materials Reports, 2020, 34(2): 2105-2109.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010102  或          http://www.mater-rep.com/CN/Y2020/V34/I2/2105
1 Lonca M. Finishing, 1990, 14(9), 35.2 Malkin I, Palm B E, Ridder J A, et al. U.S. patent application, US3671331, 1972.3 Song J W, Du M. Corrosion & Protection, 2007, 28(8), 411(in Chinese).宋积文, 杜敏. 腐蚀与防护, 2007, 28(8), 411.4 Wilcox G D, Wharton J A. Transactions of the Institute of Metal Finis-hing, 1997, 75(6), 140.5 Jiang X, Guo R G, Jiang S Q. Journal of Magnesium and Alloys, 2016, 4(3), 230.6 Sun W, Zhu L Q, Li W P, et al. Journal of Materials Engineering, 2018, 46(12), 110(in Chinese).孙伟, 朱立群, 李卫平, 等. 材料工程, 2018, 46(12), 110.7 Wan B H, Fei J Y, Wang S P, et al. Materials Review A:Review Papers, 2010, 24(10), 87(in Chinese).万冰华, 费敬银, 王少鹏, 等. 材料导报:综述篇, 2010, 24(10), 87.8 Zhang X M, Liu C M, Wang J J, et al. Journal of Materials and Metallurgy, 2012, 11(1),58(in Chinese).张旭明, 刘春明, 王建军, 等. 材料与冶金学报, 2012, 11(1),58.9 Clermont F R, Creil F R, Saint Witz F R, et al. U.S. patent application, US416375, 2004.10 Zhou W J, Xu L K, Wang J, et al. Corrosion Science and Protection Technology, 2008, 20(4), 292(in Chinese).周文娟, 许立坤, 王佳, 等. 腐蚀科技与防护技术, 2008, 20(4), 292.11 Jiang Q. Research on preparation and corrosion mechanism of Zn-Al-based alloy coatings based on dacromet coating. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2014(in Chinese).蒋穹. 基于达克罗技术的Zn-Al基合金涂层的制备及耐蚀机制研究. 博士学位论文, 南京航空航天大学, 2014.12 Liu X S, Du W W, Wang Y, et al. Materials Protection, 2017, 50(6), 61(in Chinese).刘秀生, 杜雯雯, 汪洋, 等. 材料保护, 2017, 50(6), 61.13 Liao J W, Wang G, Xie G R, et al. Electroplating & Finishing, 2017, 36(9), 478.14 Tong F. Study on chromium-free zinc-aluminum coatings enhanced by nano materials. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, China, 2014(in Chinese).仝飞. 微纳米材料增强无铬锌铝涂层研究. 硕士学位论文, 南京航空航天大学, 2014.15 Sun G X. Study on properties and preparation of sliane film. Master’s Thesis, Shenyang Ligong University, China, 2012(in Chinese).孙广霞. 硅烷膜的制备及性能研究. 硕士学位论文, 沈阳理工大学, 2012.16 Xiao Y X, Jiang X H, Xiao Y D, et al. Procedia Engineering, 2012, 27, 1644.17 Matsuzaki A, Yamaji T, Yamashita M. Surface & Coatings Technology, 2003, 169, 655.18 He J B, Lu D R, Li X L, et al. Chemical Research and Application, 2002, 14(1), 81(in Chinese).何建波, 鲁道荣, 李学良, 等. 化学研究与应用, 2002, 14(1), 81.19 Liu J G, Yan C W. Surface & Coatings Technology, 2006, 200(16), 4976.20 Liu Z L, Zhang S D, Liu X Q, et al. Surface Technology, 2017, 46(8), 7(in Chinese).刘子利, 章守东, 刘希琴, 等. 表面技术, 2017, 46(8), 7.
[1] 毕凤琴, 周帮, 王勇. 合金化对不锈钢耐蚀性能影响的研究进展[J]. 材料导报, 2019, 33(7): 1206-1214.
[2] 谭騛, 宁兆祥, 许晓嫦, 任鹏禾, 陈广兴. 新型渣浆泵用材料的腐蚀性能研究[J]. 材料导报, 2019, 33(24): 4157-4163.
[3] 常钦鹏, 陈友媛, 安振东, 王磊. B30铜镍合金表面植酸转化膜的制备工艺研究[J]. 材料导报, 2019, 33(23): 3876-3881.
[4] 向红亮, 刘春育, 邓丽萍, 张伟, 任建斌. 固溶温度对节约型双相不锈钢组织及性能的影响[J]. 材料导报, 2019, 33(16): 2759-2764.
[5] 达波, 余红发, 麻海燕, 吴彰钰. 全珊瑚海水混凝土中不同种类钢筋的防腐蚀性能[J]. 材料导报, 2019, 33(12): 2002-2008.
[6] 王先, 于思荣, 赵严, 张鹏, 刘恩洋, 熊伟. 微弧氧化时间对TA15合金陶瓷膜表面形貌和性能的影响[J]. 材料导报, 2019, 33(12): 2009-2013.
[7] 陈龙, 李文芳, 祝闻. 6063铝合金表面钛/锆/钼转化膜的制备及自愈性[J]. 材料导报, 2019, 33(10): 1691-1696.
[8] 杨贵荣, 宋文明, 王建儒, 张玉福, 王富强, 马颖. 添加碳化钨和石墨改善真空熔覆Ni-Co基合金涂层的极化行为[J]. 材料导报, 2018, 32(6): 924-929.
[9] 郭思文, 邵媛, 古正富, 任国富, 张华光. 锌含量对铝基可降解合金降解速率的影响[J]. 材料导报, 2018, 32(6): 947-950.
[10] 马妞, 黄佳木, 苏俊, 尹凌毅. MgO纳米颗粒对AZ31B镁合金微弧氧化涂层耐磨和耐蚀性的影响[J]. 材料导报, 2018, 32(16): 2768-2772.
[11] 孙博,程江波,刘奇,冯源,梁秀兵. 高速电弧喷涂FePSiBNb纳米结构的涂层结构及电化学行为[J]. 《材料导报》期刊社, 2018, 32(12): 1978-1982.
[12] 谢飞, 王丹, 吴明, 宗月, 袁世娇, 申红娟, 李睿. 海洋硫酸盐还原菌对Q235钢腐蚀行为的影响*[J]. 《材料导报》期刊社, 2017, 31(8): 51-55.
[13] 吴长军, 陆龙飞, 杨威, 苏旭平, 王建华. Fe和Ce 含量对Galfan合金力学性能及耐蚀性的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 56-59.
[14] 董鹏, 陈鼎, 陈振华, 章凯. 新型Mg-8Li-5Al-5Ca合金的微观组织、力学及耐腐蚀性能*[J]. 《材料导报》期刊社, 2017, 31(18): 64-71.
[15] 谢蔚, 张亚东, 周琼宇, 成祥, 胡安伟, 张路. 氢气气氛中热处理对Ni-W合金镀层组织和性能的影响*[J]. 《材料导报》期刊社, 2017, 31(16): 94-97.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[4] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[5] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[6] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[7] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[8] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[9] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[10] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed