Please wait a minute...
材料导报  2018, Vol. 32 Issue (16): 2768-2772    https://doi.org/10.11896/j.issn.1005-023X.2018.16.012
  金属与金属基复合材料 |
MgO纳米颗粒对AZ31B镁合金微弧氧化涂层耐磨和耐蚀性的影响
马妞, 黄佳木, 苏俊, 尹凌毅
重庆大学材料科学与工程学院,重庆 400044
Effects of MgO Nanoparticles on Corrosion and Wear Behavior of Micro-arc Oxide Coatings Formed on AZ31B Magnesium Alloy
MA Niu, HUANG Jiamu, SU Jun, YIN Lingyi
School of Materials Science and Engineering, Chongqing University, Chongqing 400044
下载:  全 文 ( PDF ) ( 3055KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了进一步改善AZ31B镁合金的耐磨和耐蚀性能,采用微弧氧化技术且在电解液中添加质量浓度为4 g/L的MgO纳米颗粒,制备了氧化物陶瓷膜。采用扫描电子显微镜观察其表面和截面形貌,采用X射线衍射仪测试微弧氧化(MAO)膜的物相组成,利用电化学工作站,盐雾试验箱测试耐腐蚀性,利用球-盘磨损实验测试耐磨性。结果表明:添加MgO纳米颗粒后,膜层孔洞的填充,膜层成分中MgO含量的增加,使腐蚀电流密度降低至4.28×10-9 A/cm2;中性盐雾试验结果表明腐蚀以点蚀和裂纹的形式发生,MgO的嵌入使腐蚀点减少和内部致密层厚度增加,从而使2 N荷载、干摩擦条件下样品的摩擦系数和磨损率分别减小至0.228和1.39×10-5 mm3/(N·m),耐蚀性和耐磨性得到改善。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马妞
黄佳木
苏俊
尹凌毅
关键词:  镁合金  微弧氧化  纳米MgO  耐蚀性  耐磨性    
Abstract: To further improve the corrosion and wear resistance of AZ31B magnesium alloy, the oxide ceramic coatings were fabricated through micro-arc oxidation, and MgO nanoparticles (4 g/L) were added into the electrolyte. The surface and cross-sectional morphology were observed by scanning electron microscopy. The phase composition was measured by X-ray diffraction. The corrosion resistance was tested by electrochemical workstation and salt spray test. The abrasion resistance was tested using pin on disk test. The results indicate that with addition of the MgO nanoparticles, the corrosion current density is reduced to 4.28×10-9 A/cm2, due to the micropores are significantly sealed and the MgO, as one of the components of the coatings is increased. The results of neutral salt spray show that the corrosion takes place in the form of pitting and crack, and the deposition of MgO reduces the corrosion point. Under dry friction of 2 N, with the increase of the thickness of the inner dense layer, the friction coefficient and the wear rate decreased to 0.228 and 1.39×10-5 mm3/(N·m), respectively. The corrosion and wear resistance are effectively improved.
Key words:  magnesium alloy    micro-arc oxidation    MgO nanoparticles    corrosion resistance    wear resistance
               出版日期:  2018-08-25      发布日期:  2018-09-18
ZTFLH:  TG174.45  
基金资助: 国家科技支撑计划(2012BAJ20B03-05)
通讯作者:  黄佳木:通信作者,男,1956年生,教授,博士研究生导师,研究方向为功能薄膜材料 E-mail:huangjiamu@cqu.edu.cn   
作者简介:  马妞:女,1992年生,硕士,研究方向为镁合金防腐蚀 E-mail:20150902032@cqu.edu.cn
引用本文:    
马妞, 黄佳木, 苏俊, 尹凌毅. MgO纳米颗粒对AZ31B镁合金微弧氧化涂层耐磨和耐蚀性的影响[J]. 材料导报, 2018, 32(16): 2768-2772.
MA Niu, HUANG Jiamu, SU Jun, YIN Lingyi. Effects of MgO Nanoparticles on Corrosion and Wear Behavior of Micro-arc Oxide Coatings Formed on AZ31B Magnesium Alloy. Materials Reports, 2018, 32(16): 2768-2772.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.16.012  或          http://www.mater-rep.com/CN/Y2018/V32/I16/2768
1 Yu L, Cao J, Cheng Y. An improvement of the wear and corrosion resistances of AZ31 magnesium alloy by plasma electrolytic oxidation in a silicate-hexametaphosphate electrolyte with the suspension of SiC nanoparticles[J]. Surface & Coatings Technology,2015,276:266.
2 Cui X J, Wei J S, Ning C M, et al. Effects of nitrogen volumetric flow rate on properties of MAO/TiN composite coatings on AZ31B magnesium alloy[J]. China Surface Engineering,2017,30(2):27(in Chinese).
崔学军,魏劲松,宁闯明,等.氮气流量对AZ31B镁合金表面MAO/TiN涂层性能的影响[J].中国表面工程,2017,30(2):27.
3 Chen C, Zhang Y P, Chen W W, et al. Preparation and properties of blue ceramic coating by micro-arc oxidation on aluminum alloy[J]. Materials Review B:Research Papers,2017,31(5):121(in Chinese).
陈超,张玉平,陈为为,等.铝合金表面蓝色微弧氧化陶瓷膜的制备及性能研究[J].材料导报:研究篇,2017,31(5):121.
4 Cui L Y, Zeng R C, Guan S K, et al. Degradation mechanism of micro-arc oxidation coatings on biodegradable Mg-Ca alloys: The inf-luence of porosity[J]. Journal of Alloys & Compounds,2016,695:2464.
5 Cui L Y, Gao S D, Li P P, et al. Corrosion resistance of a self-hea-ling micro-arc oxidation/polymethyltrimethoxysilane composite coa-ting on magnesium alloy AZ31[J]. Corrosion Science,2017,118:84.
6 Zhang R F, Wang F Y, Hu C Y, et al. Research progress in sealing treatment of anodic coatings formed on magnesium alloys[J].Journal of Material Engineering,2007(11):82(in Chinese).
张荣发,王方圆,胡长员,等.镁合金阳极氧化膜封孔处理的研究进展[J].材料工程,2007(11):82.
7 Narayanan T S N S, Min H L. A simple strategy to modify the po-rous structure of plasma electrolytic oxidation coatings on magnesium[J]. RSC Advances,2016,6(19):16100.
8 Li Z, Jing X, Yuan Y, et al. Composite coatings on a Mg-Li alloy prepared by combined plasma electrolytic oxidation and sol-gel techniques[J]. Corrosion Science,2012,63:358.
9 Lu X P, Mohedano M, Blawert C, et al. Plasma electrolytic oxidation coatings with particle additions—A review[J]. Surface & Coa-tings Technology,2016,307:1165.
10 Aliofkhazraei M, Gharabagh R S, Teimouri M, et al. Ceria embedded nanocomposite coating fabricated by plasma electrolytic oxidation on titanium[J]. Journal of Alloys & Compounds,2016,685:376.
11 Zhao J, Xie X, Zhang C. Effect of the graphene oxide additive on the corrosion resistance of the plasma electrolytic oxidation coating of the AZ31 magnesium alloy[J]. Corrosion Science,2017,114:146.
12 Lee S J, Toan D L H. Effects of copper additive on micro-arc oxidation coating of LZ91 magnesium-lithium alloy[J]. Surface & Coa-tings Technology,2016,307:781.
13 Vakili-Azghandi M, Fattah-Alhosseini A, Keshavarz M K. Effects of Al2O3 nano-particles on corrosion performance of plasma electrolytic oxidation coatings formed on 6061 aluminum alloy[J]. Journal of Materials Engineering & Performance,2016,25(12):5302.
14 Vatan H N, Ebrahimi-Kahrizsangi R, Kasiri-Asgarani M. Structu-ral, tribological and electrochemical behavior of SiC nanocomposite oxide coa-tings fabricated by plasma electrolytic oxidation (PEO) on AZ31 magnesium alloy[J]. Journal of Alloys & Compounds,2016,683:241.
15 Zhang R H, Zhao J, Liang J. A novel multifunctional PTFE/PEO composite coating prepared by one-step method[J]. Surface & Coa-tings Technology,2016,299:90.
16 Schneider M, Kremmer K, Hǒhn S. Corrosion protection of thickness reduced plasma electrolytic layers on AZ31[J]. Materials & Corrosion,2016,67(9):921.
17 Lai X M, Kang Z X, Li Y Y. Duplex surface modification combined with micro-arc oxidation and polymer plating on AZ31 magnesium alloy and their functional properties[J]. Chinese Journal of Nonferrous Metals,2011,21(6):1299(in Chinese).
赖晓明,康志新,李元元.AZ31镁合金微弧氧化与有机镀膜的复合表面改性及功能特性[J].中国有色金属学报,2011,21(6):1299.
18 Asgari M, Aliofkhazraei M, Darband G B, et al. Evaluation of alumina nanoparticles concentration and stirring rate on wear and corrosion behavior of nanocomposite PEO coating on AZ31 magnesium alloy[J]. Surface & Coatings Technology,2017,309:124.
19 Arrabal R, Matykina E, Skeldon P, et al. Incorporation of zirconia particles into coatings formed on magnesium by plasma electrolytic oxidation[J]. Journal of Materials Science,2008,43(5):1532.
20 Arrabal R, Matykina E, Viejo F, et al. AC plasma electrolytic oxidation of magnesium with zirconia nanoparticles[J]. Applied Surface Science,2008,254(21):6937.
21 Shin K R, Namgung S, Yoo B, et al. Electrochemical response of ZrO2-incorporated oxide layer on AZ91 Mg alloy processed by plasma electrolytic oxidation[J]. Surface & Coatings Technology,2011,205(13-14):3779.
22 Arun S, Arunnellaiappan T, Rameshbabu N. Fabrication of the na-noparticle incorporated PEO coating on commercially pure zirconium and its corrosion resistance[J]. Surface & Coatings Technology,2016,305:264.
23 Yin Z Z, Zeng R C, Cui L Y, et al. Progress on phosphate coatings on biodegradable magnesium alloys[J].Journal of Shandong University of Science and Technology(Natural Science),2017,36(2):57(in Chinese).
殷正正,曾荣昌,崔蓝月,等.医用可降解镁合金表面磷酸盐涂层研究进展[J].山东科技大学学报(自然科学版),2017,36(2):57.
24 Cui L Y, Wu S S, Xu L F, et al. Induction effect of layer-by-layer assembled PAH/PSS multilayers to construct Ca-P coating on magnesium alloy[J].Surface Technology,2017,46(3):34(in Chinese).
崔蓝月,吴思思,徐丽粉,等.镁合金表面层层组装PSS/PAH膜诱导钙磷涂层[J].表面技术,2017,46(3):34.
25 Ko Y G, Namgung S, Dong H S. Correlation between KOH concentration and surface properties of AZ91 magnesium alloy coated by plasma electrolytic oxidation[J]. Surface & Coatings Technology,2010,205(7):2525.
26 Wang Y Q, Wang Y, Chen P M, et al. Microstructure, corrosion and wear resistances of microarc oxidation coating on al alloy 7075[J]. Acta Metallurgica Sinica,2011,47(4):455(in Chinese).
王艳秋,王岳,陈派明,等.7075铝合金微弧氧化涂层的组织结构与耐蚀耐磨性能[J].金属学报,2011,47(4):455.
27 Yang Qing, Gou Yinning, Su Yongyao,et al. Investigation of anodic oxidation of ultra-fine grained magnesium alloy obtained by extrusion and shearing process[J]. Journal of Chongqing University of Technology(Natural Science),2017(12):58(in Chinese).
杨卿,沟引宁,苏永要,等.挤压-剪切镁合金的阳极氧化研究[J].重庆理工大学学报(自然科学),2017(12):58.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[3] 薛艺, 田青超. 硬质合金切削刀具研究进展[J]. 材料导报, 2019, 33(z1): 353-357.
[4] 彭鹏, 汤爱涛, 佘加, 周世博, 潘复生. 超细晶镁合金的研究现状及展望[J]. 材料导报, 2019, 33(9): 1526-1534.
[5] 毕凤琴, 周帮, 王勇. 合金化对不锈钢耐蚀性能影响的研究进展[J]. 材料导报, 2019, 33(7): 1206-1214.
[6] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[7] 宋雨来, 付洪德, 王震, 杨鹏聪. 镁合金的应力腐蚀开裂:机理、影响因素、防护技术[J]. 材料导报, 2019, 33(5): 834-840.
[8] 姚天宇, 杨海燕, 周素洪, 叶兵, 蒋海燕. 镁合金表面电沉积铝工艺的研究进展[J]. 材料导报, 2019, 33(3): 470-478.
[9] 向红亮, 刘春育, 邓丽萍, 张伟, 任建斌. 固溶温度对节约型双相不锈钢组织及性能的影响[J]. 材料导报, 2019, 33(16): 2759-2764.
[10] 张娜,程仁菊,董含武,刘文君,詹俊,蒋斌,潘复生. Sr在耐热镁合金中的应用及研究进展[J]. 材料导报, 2019, 33(15): 2565-2571.
[11] 郑博, 赵丽, 董仕节, 胡心彬. 镁铝金属间化合物的第一性原理研究[J]. 材料导报, 2019, 33(14): 2426-2430.
[12] 陈玉静, 沙爱民, 胡魁, 刘状壮, 曹世豪, 张华. 青藏地区路用遮热涂层的制备及性能[J]. 材料导报, 2019, 33(14): 2319-2325.
[13] 王春明,杨牧南,黄建辉,刘位江,梁彤祥. 镁合金表面自纳米化研究进展及现状[J]. 材料导报, 2019, 33(13): 2260-2265.
[14] 王先, 于思荣, 赵严, 张鹏, 刘恩洋, 熊伟. 微弧氧化时间对TA15合金陶瓷膜表面形貌和性能的影响[J]. 材料导报, 2019, 33(12): 2009-2013.
[15] 石磊, 柳翊, 沈俊芳, 金文中, 王黎, 张伟. P-ECAP挤压镁合金空心壁板的晶粒度演变模拟和实验研究[J]. 材料导报, 2019, 33(12): 2019-2024.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed