Please wait a minute...
材料导报  2019, Vol. 33 Issue (16): 2759-2764    https://doi.org/10.11896/cldb.18070063
  金属与金属基复合材料 |
固溶温度对节约型双相不锈钢组织及性能的影响
向红亮1, 2,, 刘春育1, 邓丽萍1, 张伟3, 任建斌4
1 福州大学机械工程及自动化学院, 福州 350108
2 福州大学晋江科教园,晋江 362200
3 宝钢不锈钢技术中心,上海 201900
4 宝钢德盛不锈钢有限公司,罗源 350600
Effect of Solution Temperature on Microstructure and Properties of Economical Duplex Stainless Steel
XIANG Hongliang1,2, LIU Chunyu1, DENG Liping1, ZHANG Wei3, REN Jianbin4
1 School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108
2 Jinjiang Science and Education Park of Fuzhou University, Jinjiang 362200
3 Baosteel Technology Center, Shanghai 201900
4 Baosteel-desheng Co., Ltd., Luoyuan 350600
下载:  全 文 ( PDF ) ( 2623KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作制得节约型NSSC 2120双相不锈钢,采用光学显微镜(OM)、扫描电镜(SEM)、万能材料试验机及电化学工作站研究了固溶温度(1 000 ℃、1 050 ℃、1 100 ℃、1 150 ℃、1 200 ℃)对其组织、力学性能及耐蚀性能的影响,同时制备LDX 2101、SUS 304不锈钢并进行了对比分析。结果表明:当固溶温度由1 000 ℃升至1 050 ℃时,长条、针状的二次奥氏体(γ2)演变成铁素体,使NSSC 2120双相不锈钢的抗拉强度及耐蚀性能得到提升;温度提高至1 150 ℃时,铁素体含量的增加与细小、均匀的奥氏体相共同导致NSSC 2120双相不锈钢的抗拉强度达到峰值(632.5 MPa),起主导因素的奥氏体相形态使得腐蚀电流密度降至最低值(2.247×10-6 μA·cm-2);固溶温度进一步提高至1 200 ℃时,两相比例虽接近1∶1,但NSSC 2120双相不锈钢的抗拉强度及耐蚀性能大幅下降,这与奥氏体尖锐化有关。与节约型双相不锈钢LDX 2101和SUS 304奥氏体不锈钢相比,NSSC 2120双相不锈钢原材料成本更低,且在最佳固溶温度下其力学性能及耐点蚀性能都更好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
向红亮
刘春育
邓丽萍
张伟
任建斌
关键词:  节约型NSSC  2120双相不锈钢  固溶温度  力学性能  耐蚀性能  二次奥氏体    
Abstract: The effect of solution temperatures (1 000 ℃, 1 050 ℃, 1 100 ℃, 1 150 ℃, 1 200 ℃) on the microstructure, mechanical properties and corrosion resistance of NSSC 2120 duplex stainless steel has been investigated by OM, SEM, tensile and electrochemical experiments. The results showed that, as the temperature increased from 1 000 ℃ to 1 050 ℃, the strip or needle-shaped secondary austenite developed into ferrite, improving the tensile strength and corrosion resistance of NSSC 2120 duplex stainless steel. When the solution temperature went up to 1 150 ℃, both the increment of ferrite content and the tiny uniform austenite induced the tensile strength to reach a peak (632.5 MPa). As the dominant factor, the austenite resulted in a minimum corrosion current density of 2.247×10-6 μA·cm-2. When the solution temperature rised to 1 200 ℃, although the ratio of the two phases is close to 1∶1, the tensile strength and corrosion resistance decrease significantly. This is attributed to the austenite sharpening. Compared with the economical duplex stainless steel LDX 2101 and SUS 304 austenitic stainless steel, NSSC steel is excellent in the respect of the cost, the mechanical properties and pitting corrosion resistance.
Key words:  economical NSSC    2120 duplex stainless steel    solution temperature    mechanical property    corrosion resistance    secondary austenite
                    发布日期:  2019-07-12
ZTFLH:  TG162.9  
基金资助: 国家自然科学基金(51601039);福建省科技重大专项项目(2017HZ0001-2);福建省2016年产业技术联合创新专项(FG-2016001);上海市青年科技启明星计划(17QB1400100);福建省先进金属材料及成形技术创新团队及保障体系建设专项
作者简介:  向红亮,福州大学教授,博士研究生导师,本科毕业于东北大学,博士毕业于华中科技大学。福建省新世纪优秀人才,福州市劳动模范。主要围绕不锈钢开展工作:高性能不锈钢设计与开发,节约型不锈钢设计及开发,不锈钢QPQ处理,抗菌性不锈钢设计及制备,特级双相不锈钢研究等。发表文章50余篇,获授权专利10余项。承担过国家基金委、科技部、福建省发改委、福建省科技厅、福建省经信委、福建省教育厅、福建省海洋与渔业厅等单位项目。获福建省科学进步奖二等奖一项,三等奖两项。
引用本文:    
向红亮, 刘春育, 邓丽萍, 张伟, 任建斌. 固溶温度对节约型双相不锈钢组织及性能的影响[J]. 材料导报, 2019, 33(16): 2759-2764.
XIANG Hongliang, LIU Chunyu, DENG Liping, ZHANG Wei, REN Jianbin. Effect of Solution Temperature on Microstructure and Properties of Economical Duplex Stainless Steel. Materials Reports, 2019, 33(16): 2759-2764.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070063  或          http://www.mater-rep.com/CN/Y2019/V33/I16/2759
[1] Feng H, Zhou X Y, Liu H, et al. Journal of Iron and Steel Research, 2015, 17(4), 1(in Chinese).
丰涵, 周晓玉, 刘虎, 等. 钢铁研究学报, 2015, 27(4),1.
[2] Sun Q Q, Zhong H G, Cao X, et al. Shanghai Metals, 2012, 34(4),38(in Chinese).
孙卿卿, 仲红刚, 曹欣, 等.上海金属, 2012, 34(4),38.
[3] Lothongkum G, Wongpanya P, Morito S, et al. Corrosion Science, 2006, 48(1), 137.
[4] Yoda K, Suyalatu, Nomura N, et al. Acta Biomaterialia, 2012, 8 (7), 2856.
[5] Espitia L A, Dong H, Li X Y, et al. Wear, 2015, 332,1070.
[6] Li J, Xu Y L, Xiao X S, et al. Materials Science and Engineering A, 2009, 527(1-2), 245.
[7] Chen Yulai, Luo Zhaoyin, Li Jingyuan. Acta Metallurgica Sinica, 2015, 51(9), 1085(in Chinese).
陈雨来, 罗照银, 李静媛.金属学报, 2015, 51(9),1085.
[8] Yuan C, Guo J T, Zhou L Z. Advanced Materials Research, 2011, 278, 472.
[9] Gong L, Chen B, Yang Y Q, et al. Materials Science and Engineering A, 2017, 701,111.
[10] Quan Rong. Development of low cost dual phase stainless steel with high performance price ratio. Word Metals, 2016-07-26-B14(in Chinese).
全荣. 高性价比低合金双相不锈钢的开发. 世界金属导报, 2016-07-26(B14).
[11] Ramirez A J, Lippold J C, Brandi S D. Metallurgical and Materials Transactions A, 2003, 34(8), 1575.
[12] Wu Jiu. Duplex stainless steel, Metallurgical Industry Press, China, 1999 (in Chinese).
吴玖. 双相不锈钢, 冶金工业出版社, 1999.
[13] Zheng Yugui, Yao Zhiming, Ke Wei. Corrosion Science and Protection Technology, 2000, 12(1), 38(in Chinese).
郑玉贵, 姚治铭, 柯伟.腐蚀科学与防护技术, 2000, 12(1), 38.
[14] Russell D, Kane D. Influence of velocity interactions of oil composition, Inter Corrosion International Inc, New York, 2000.
[15] Forgas J A, Otubo J, Magnabosco R. Journal of Aerospace Technology and Management, 2016, 8(3), 357.
[16] Wang Lixin, Li Huabing, Li Guoping, et al. Chinese Journal of Materials Research, 2016, 30(12), 888 (in Chinese).
王立新, 李花兵, 李国平, 等. 材料研究学报, 2016, 30(12), 888.
[17] Xiang Hongliang, Huang Weilin, Liu Dong, et al. Acta Metallurgica Si-nica, 2010, 46(3), 304(in Chinese).
向红亮, 黄伟林, 刘东, 等. 金属学报, 2010, 46(3), 304.
[18] Wang Fengping, Kang Wanli, Jing Heping. Principles, methods and applications of corrosion electrochemistry, Chemical Industry Press, China, 2008 (in Chinese).
王凤平, 康万利, 敬和平. 腐蚀电化学原理、方法及应用,化学工业出版社, 2008.
[19] Zheng Chuanbo, Chen Xi. Journal of Guangxi Academy of Sciences, 2016, 32(3),161(in Chinese).
郑传波, 陈曦. 广西科学院学报, 2016, 32(3),161.
[20] Zhang Yan, Li Qian, Wang Shenggang. Journal of Materials Enginee-ring, 2016, 44(1), 108(in Chinese).
张艳, 李倩, 王胜刚.材料工程, 2016, 44(1), 108.
[21] Muthupandi V, Srinivasan P B, Seshadri S K,et al. Science and Techno-logy of Weld and Joining, 2004, 9(1), 47.
[22] Song Zhigang, Chen Bin, Zheng Wenjie, et al. Journal of Iron and Steel Research International, 2007, 19(6), 69(in Chinese).
宋志刚, 陈斌, 郑文杰, 等.钢铁研究学报, 2007, 19(6), 69.
[23] Shi Lin. Effect of bimodal structure and nanocrystalline on pitting corrosion of 304 austenitic stainless steel. Master’s Thesis, South China University of Technology Guangzhou, China, 2016 (in Chinese).
石林. 双尺度结构及单一纳米晶结构对304奥氏体不锈钢点蚀性能的影响. 硕士学位论文,华南理工大学, 2016.
[24] Liu Jingjun, Lin Yuzhen, Yong Xingyue, et al. Corrosion Science and Protection Technology, 2002, 14(3),129(in Chinese).
刘景军, 林玉珍, 雍兴跃, 等.腐蚀科学与防护技术, 2002, 14(3), 129.
[25] Moayed M H, Laycock N J, Newman R C. Corrosion Science, 2003, 45, 1203.
[26] Lijas M, Johansson P, Liu H P, et al. Steel Research International, 2008, 79 (6), 466.
[27] General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. GB/T 1220-2007. Stainless steel bars. PRC standard, 2007 (in Chinese).
中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T 1220-2007. 不锈钢棒. 中华人民共和国国家标准, 2007.
[28] Liu Zhengshao, Chen Shaowen, Li Xiugui, et al. Marine Science, 1986, 10(4), 5(in Chinese).
刘正生, 陈少文, 李秀桂, 等.海洋科学, 1986, 10(4), 5.
[29] Ma L, Hu S S, Shen J Q. Journal of Materials Engineering and Perfor-mance, 2017, 26(1), 250.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[9] 毕凤琴, 周帮, 王勇. 合金化对不锈钢耐蚀性能影响的研究进展[J]. 材料导报, 2019, 33(7): 1206-1214.
[10] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[11] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[12] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[13] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[14] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[15] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed