Please wait a minute...
材料导报  2019, Vol. 33 Issue (16): 2765-2770    https://doi.org/10.11896/cldb.18060114
  金属与金属基复合材料 |
两相区退火热轧中锰钢碳化物析出行为与组织性能研究
田亚强, 黎旺, 郑小平, 宋进英, 魏英立, 陈连生
华北理工大学教育部现代冶金技术重点实验室,唐山 063210
Study on Carbide Precipitation Behavior and Microstructure and Mechanical Property of Intercritically Annealed Hot-rolled Medium Manganese Steel
TIAN Yaqiang, LI Wang, ZHENG Xiaoping, SONG Jinying, WEI Yingli, CHEN Liansheng
Key Laboratory of the Ministry of Education for Modern Metallurgy Technology, North China University of Science and Technology, Tangshan 063210
下载:  全 文 ( PDF ) ( 2839KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 采用奥氏体逆相变(ART)退火热处理工艺,研究了退火过程中碳化物析出行为对中锰钢中组织的演变、残余奥氏体含量及力学性能的影响。结果表明,实验钢经ART工艺处理后,获得了铁素体、残余奥氏体与少量马氏体多相组织;退火初期(5 min),碳化物受高密度位错钉扎C、Mn原子的抑制作用,使得逆相奥氏体先于碳化物在原奥氏体边界或马氏体板条界面析出;退火中期(10 min),位错密度因回复快速减小,C、Mn原子扩散激活能增大,促进了大量碳化物析出;随退火时间延长(30~60 min),细小碳化物作为新生奥氏体核心逐渐溶解,残余奥氏体体积分数以及残余奥氏体中C含量提高;伴随碳化物析出与溶解,实验钢屈服强度呈先升高后降低的趋势,而断后伸长率及均匀延伸率呈持续升高趋势,退火60 min时,断后伸长率达到41.1%,均匀延伸率达到34.3%,抗拉强度达到821 MPa,实验钢获得高达33 743 MPa·%的强塑积。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田亚强
黎旺
郑小平
宋进英
魏英立
陈连生
关键词:  中锰钢  碳化物析出行为  残余奥氏体  析出强化  加工硬化速率    
Abstract: The effect of carbide precipitation behavior at different annealing time on microstructure evolution, retained austenite content and mechanical properties for medium manganese steel was investigated by means of ART (Austenite reversed transformation) annealing heat treatment process. The results indicate that the microstructure of experimental steel is composed of ferrite, retained austenite and a small amount of martensite heterogeneous structure after treated by ART process. In the pre-annealing (5 min), the carbide is inhibited by high-density dislocations pinning C and Mn atoms, so that reversed austenite is precipitated before carbides at the boundaries of prior austenite or martensite laths. In the middle of annealing (10 min), the dislocation density decreases rapidly due to recovery, and the diffusion activation energy of C and Mn atoms are increased, which promotes the precipitation of a large amount of carbides. With the annealing time prolonged (30—60 min), the fine carbides are gradually dissolved as the nascent austenite core, and the volume fraction of retained austenite and C content increase. With the precipitation and dissolution of carbides, the yield strength of experimental steel first increase and then decrease, but the elongation and uniform ductility after fracture show a tendency of continuous increased. After 60 min annealing, the elongation after fracture reaches 41.1%, the uniform ductility reaches 34.3%, and the tensile strength reaches 821 MPa. The experimental steel obtaines the production of strength and elongation of up to 33 743 MPa·%.
Key words:  medium-manganese steel    carbide precipitation behavior    retained austenite    precipitation strengthening    work hardening rate
               出版日期:  2019-08-25      发布日期:  2019-07-12
ZTFLH:  TG156.2  
基金资助: 国家自然科学基金(51574107);河北省自然科学基金(E2016209048;E2017209048)
作者简介:  田亚强,华北理工大学冶金与能源学院金属材料及加工工程系副主任,河北省新世纪“三三三人才工程”第三层次人选,教授,硕士研究生导师。2002年7月本科毕业于河北理工学院,2009年6月在北京科技大学材料加工工程专业取得博士学位。主要从事新金属材料组织性能控制、合金强韧化机理和高性能钢铁材料成形工艺、金属形变强化工艺与理论、金属基复合材料等方面的研究,获唐山市科技进步一等奖1项。在《金属学报》《材料工程》《工程科学学报》《材料导报》等发表学术论文50余篇,SCI、EI检索论文10余篇。
陈连生,华北理工大学技术转移中心副主任、科学技术处副处长,博士,教授,硕士研究生导师。国家科技奖励评审专家,中国金属学会青年轧钢工作委员会委员、塑性加工理论与新技术学术委员会委员,河北省冶金学会压力加工委员会委员,河北省新世纪“三三三人才工程”第二层次人选,河北省优秀教师。从事新金属材料组织性能控制、合金强韧化机理和高性能钢铁材料成形工艺、金属形变强化工艺与理论、金属基复合材料等方面的研究,获河北省科技进步奖等省部级奖励5项,市厅级一、二、三等奖8项。在《金属学报》《材料工程》《工程科学学报》《材料热处理学报》等发表学术论文80余篇。
引用本文:    
田亚强, 黎旺, 郑小平, 宋进英, 魏英立, 陈连生. 两相区退火热轧中锰钢碳化物析出行为与组织性能研究[J]. 材料导报, 2019, 33(16): 2765-2770.
TIAN Yaqiang, LI Wang, ZHENG Xiaoping, SONG Jinying, WEI Yingli, CHEN Liansheng. Study on Carbide Precipitation Behavior and Microstructure and Mechanical Property of Intercritically Annealed Hot-rolled Medium Manganese Steel. Materials Reports, 2019, 33(16): 2765-2770.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18060114  或          http://www.mater-rep.com/CN/Y2019/V33/I16/2765
[1] Zhou S, Zhang K, Wang Y, et al. Materials Science & Engineering A, 2011, 528(27), 8006.
[2] Song Y L, Yang L, Guo W, et al. Materials Review A:Review Papers, 2016, 30(9), 16 (in Chinese).
宋燕利, 杨龙, 郭巍, 等. 材料导报: 综述篇, 2016, 30(9), 16.
[3] Hu B, Luo H, Yang F, et al. Journal of Materials Science & Technology, 2017, 33(12), 1457.
[4] Pierman A P, Bouaziz O, Pardoen T, et al. Acta Materialia, 2014, 73(7), 298.
[5] Lee C G, Kim S J, Lee T H, et al. Materials Science and Engineering: A, 2004, 371(1), 16.
[6] Clarke A J, Speer J G, Miller M K, et al. Acta Materialia, 2008, 56(1), 16.
[7] Lee S, De Cooman B C. Metallurgical & Materials Transactions A, 2016, 47(7), 3263.
[8] Lee S, De Cooman B C. Steel Research International, 2015, 86(10), 1170.
[9] Lee S, Estrin Y, De Cooman B C. Metallurgical & Materials Transactions A, 2014, 45(2), 717.
[10] Chen L S, Cao H Z, Tian Y Q, et al. Materials Review B:Research Papers, 2017, 31(3), 105 (in Chinese).
陈连生, 曹鸿梓, 田亚强,等. 材料导报:研究篇, 2017, 31(3), 105.
[11] Jing C N, Wang Z C, et al. Materials Review, 2004, 18(11), 36 (in Chinese).
景财年, 王作成. 材料导报, 2004, 18(11), 36.
[12] Speer J G, Matlock D K, De Cooman B C, et al. Scripta Materialia, 2005, 52(1), 83.
[13] Goune M, Maugis P, Drillet J. Journal of Materials Science & Technology, 2012, 28(8), 728.
[14] Yang Z N, Xia Y, Enomoto M, et al. Metallurgical & Materials Transactions A, 2016, 47(3), 1019.
[15] Zhou Y, Liu Y, Zhou X, et al. Journal of Materials Science & Technology, 2017, 33(12), 1448.
[16] Rong Y H. Acta Metallurgica Sinica, 2011, 47(12), 1483 (in Chinese).
戎咏华. 金属学报, 2011, 47(12), 1483.
[17] Wang C, Cao W, Han Y, et al. Journal of Iron and Steel Research, International, 2015, 22(1), 42.
[18] Xu H F, Zhao J, Cao W Q, et al. Materials Science & Engineering A, 2012, 532(1), 435.
[19] Lee S, De Cooman B C, et al. Metallurgical & Materials Transactions A, 2013, 44(11), 5018.
[20] Li Y, Li X, Yuan G, et al. Materials Characterization, 2016, 121, 157.
[21] Jiang H B, Luo X N, Zhong X Y, et al. Journal of Iron and Steel Research (International), 2017, 24(11), 1109.
[22] Silva A K D, Leyson G, Kuzmina M, et al. Acta Materialia, 2017, 124, 305.
[23] Lai Q, Gouné M, Perlade A, et al. Metallurgical & Materials Transactions A, 2016, 47A(7), 1.
[24] He Y M, Wang Y H, Guo K, et al. Materials Science and Engineering: A, 2017, 708, 248.
[25] Luo H, Shi J, Wang C, et al. Acta Materialia, 2011, 59(10), 4002.,
[26] Wang C, Shi J, Yu W C, et al. ISIJ International, 2011, 51(4), 651.
[27] Han J, Lee Y K. Acta Materialia, 2014, 67(15), 354.
[28] Chen L S, Li Y, Zhang M S, et al. Acta Metallurgica Sinica, 2017, 53(11), 1418 (in Chinese).
陈连生, 李跃, 张明山, 等. 金属学报, 2017, 53(11), 1418.
[29] Kuzmina M, Herbig M, Ponge D, et al. Science, 2015, 349(6252), 1080.
[30] Galon J, Mlecnik B, Bindea G, et al. Nuclear Instruments & Methods in Physics Research, 2015, 352(2), 77.
[31] Li J, Liu B, Fang Q H, et al. Ceramics International, 2017, 43(4), 3839.
[32] Tan X, Xu Y, Yang X, et al. Materials Science & Engineering A, 2014, 589(2), 101.
[33] Liu J Y, Wu Y S, Wei L, et al. Journal of Materials Engineering, 2003(3), 24 (in Chinese).
刘俊友, 伍燕生, 魏立,等. 材料工程, 2003(3), 24.
[34] Cao J, Yong Q, Liu Q, et al. Journal of Materials Science, 2007, 42(24), 10080.
[35] Wang Y, Zhang K, Guo Z H, et al. Acta Metallurgica Sinica, 2012, 48(6), 641 (in Chinese).
王颖, 张柯, 郭正洪,等. 金属学报, 2012, 48(6), 641.
[36] Xie Z J, Shang C J, Zhou W H, et al. Acta Metallurgica Sinica, 2016, 52(2), 224 (in Chinese).
谢振家, 尚成嘉, 周文浩,等. 金属学报, 2016, 52(2), 224.
[1] 刘倩, 郑小平, 张荣华, 田亚强, 陈连生. 新型汽车用高强度中锰钢研究现状及发展趋势[J]. 材料导报, 2019, 33(7): 1215-1220.
[2] 李建, 贾涓, 宋新莉, 孙新军, 范丽霞, 马玉喜, 梁小凯. 一步配分工艺对低合金耐磨钢组织性能的影响[J]. 材料导报, 2019, 33(18): 3113-3118.
[3] 邓燕君, 黄光杰, 曹玲飞, 吴晓东, 黄利. 预变形对Al-Cu-Li-Mn-Zr合金的第二相析出及力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 569-573.
[4] 李辉, 陈家泳, 段晓鸽, 江海涛. 中锰Q&P钢残余奥氏体的稳定性及其TRIP效应[J]. 《材料导报》期刊社, 2018, 32(4): 611-615.
[5] 陈连生, 曹鸿梓, 田亚强, 宋进英, 魏英立, 郑小平. 前驱体对含Cu低碳钢I&Q&P处理后组织性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 105-109.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed