Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (4): 569-573    https://doi.org/10.11896/j.issn.1005-023X.2018.04.012
  材料研究 |
预变形对Al-Cu-Li-Mn-Zr合金的第二相析出及力学性能的影响
邓燕君, 黄光杰, 曹玲飞, 吴晓东, 黄利
重庆大学材料科学与工程学院,重庆 400044
Effect of Pre-deformation on the Precipitation Behavior and Mechanical Property of Al-Cu-Li-Mn-Zr Alloy
DENG Yanjun, HUANG Guangjie, CAO Lingfei, WU Xiaodong, HUANG Li
College of Materials Science and Engineering, Chongqing University, Chongqing 400044
下载:  全 文 ( PDF ) ( 2237KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用维氏硬度、常温拉伸及透射电子显微镜等测试手段,研究了不同预变形状态对Al-Cu-Li-Mn-Zr合金中第二相析出行为及力学性能的影响。结果表明,未经预变形的峰值时效态Al-Cu-Li-Mn-Zr合金的析出相有T1(Al2CuLi)相、θ'(Al2Cu)相,且存在极少量的χ(Al5Cu6Li2)相。预变形的引入使T1相的析出量显著增加,同时抑制了θ'相的形成,但对χ相的析出量的影响却较小。由此可知,经预变形的合金在峰值时效态的析出相以细小弥散的T1相为主。经定量统计可知,预变形量越大,作为主要析出相的盘片状T1相的直径越小,但厚度及体积分数几乎保持不变。此外,随着预变形量的增大,峰值时效态合金的屈服强度和抗拉强度升高,塑性降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓燕君
黄光杰
曹玲飞
吴晓东
黄利
关键词:  Al-Cu-Li-Mn-Zr合金  预变形  T1  析出强化    
Abstract: The effect of pre-deformation on the precipitation behavior and mechanical property of Al-Cu-Li-Mn-Zr alloy were investigated by Vickers hardness measurement, room-temperature tensile test and transmission electron microscopy (TEM) characterization. The results showed that in the peak aged Al-Cu-Li-Mn-Zr alloy without pre-deformation, the T1 and θ' phases were usually dominant, while the amount of χ phase was very limited. When this alloy was subjected to the pre-deformation prior to aging, the formation of T1 was promoted, and the nucleation of θ' was inhibited, while there was little influence on the formation of χ phase. Therefore, the T1 phase was primary precipitate in the aged alloy with pre-strain. With the increase of pre-strain, although the diameter of the T1 precipitates became smaller, the thickness and volume fraction of them kept almost the same. In addition, when larger pre-strain was applied, the alloy showed higher strength and lower plasticity.
Key words:  Al-Cu-Li-Mn-Zr alloy    pre-deformation    T1 precipitate    precipitation strengthening
               出版日期:  2018-02-25      发布日期:  2018-02-25
ZTFLH:  TG166.3  
基金资助: 国家自然科学基金(51421001); 中央高校基本科研基金(106112015CDJXY130003)
通讯作者:  黄光杰:,男,1964年生,博士,教授,主要从事轻合金的变形、再结晶机制及其表征方面的研究 E-mail: gjhuang@cqu.edu.cn;吴晓东:,男,1974年生,博士,副教授,主要从事金属的力学行为和组织结构表征方面的研究 E-mail: xiaodongwu@cqu.edu.cn   
作者简介:  邓燕君:女,1989年生,博士研究生,主要从事金属材料的力学行为及组织结构表征方面的研究 E-mail:15123312566@139.com
引用本文:    
邓燕君, 黄光杰, 曹玲飞, 吴晓东, 黄利. 预变形对Al-Cu-Li-Mn-Zr合金的第二相析出及力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 569-573.
DENG Yanjun, HUANG Guangjie, CAO Lingfei, WU Xiaodong, HUANG Li. Effect of Pre-deformation on the Precipitation Behavior and Mechanical Property of Al-Cu-Li-Mn-Zr Alloy. Materials Reports, 2018, 32(4): 569-573.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.04.012  或          http://www.mater-rep.com/CN/Y2018/V32/I4/569
1 Rioja R J. Fabrication methods to manufacture isotropic Al-Li alloys and products for space and aerospace applications[J]. Materials Science and Engineering: A, 1998, 257(1): 100.
2 Gayle F W, Heubaum F H, Pickens J R. Structure and properties during aging of an ultra-high strength Al-Cu-Li-Ag-Mg alloy[J]. Scripta Metallurgica et Materialia, 1990, 24(1): 79.
3 Starke E A, Staley J T. Application of modern aluminum alloys to aircraft[J]. Progress in Aerospace Science, 1996, 32(2-3): 131.
4 Giummarra C, Thomas B, Rioja R J. New aluminum lithium alloys for aerospace applications[C]∥Proceedings of the Light Metals Technology Conference, 2007, 184: 19.
5 Warner T. Recently-developed aluminium solutions for aerospace applications[J].Materials Science Forum, 2006, 519: 1271.
6 Davis J R. Aluminium and aluminium alloys[M].Ohio: ASM International, 1993.
7 Dorin T, Deschamps A, Geuser F D, et al. Quantification and mo-delling of the microstructure/strength relationship by tailoring the morphological parameters of the T1 phase in an Al-Cu-Li alloy[J]. Acta Materialia, 2014, 75(15): 134.
8 Gable B M, Zhu A W, Csontos A A, et al. The role of plastic deformation on the competitive microstructural evolution and mechanical properties of a novel Al-Li-Cu-X alloy[J]. Journal of Light Me-tals, 2001, 1(1): 1.
9 Cassada W A, Shiflet G J, Starke E A. The effect of plastic defor-mation on Al2CuLi (T1) precipitation[J]. Metallurgical and Mate-rials Transactions A, 1991, 22(2): 299.
10 Ringer S P, Muddle B C, Polmear I J. Effects of cold work on precipitation in Al-Cu-Mg-(Ag) and Al-Cu-Li-(Mg-Ag) alloys[J]. Metallurgical and Materials Transactions A, 1995, 26(7): 1659.
11 Martin J W. Precipitation hardening: Theory and applications[M]. Butterworth-Heinemann, 2012.
12 Tsivoulas D, Prangnell P B. Comparison of the effect of individual and combined Zr and Mn additions on the fracture behavior of Al-Cu-Li alloy AA2198 rolled sheet[J]. Metallurgical and Materials Tran-sactions A, 2014, 45(3): 1338.
13 Rodgers B I, Prangnell P B. Quantification of the influence of increased pre-stretching on microstructure-strength relationships in the Al-Cu-Li alloy AA2195[J]. Acta Materialia, 2016, 108(15): 55.
14 Pan Z, Zheng Z, Liao Z, et al. New cubic precipitate in Al-3.5Cu-1.0Li-0.5In (wt.%) alloy[J].Materials Letters,2010,64(8):942.
15 Hornbogen E. Formation of nm-size dispersoids from supersaturated solid solutions of aluminium[J].Materials Science Forum, 2000, 331: 879.
16 Li D, Chen L. Computer simulation of stress-oriented nucleation and growth of θ' precipitates in Al-Cu alloys[J]. Acta Materialia, 1998, 46(8): 2573.
17 Huang J C, Ardell A J. Strengthening mechanisms associated with T1 particles in two Al-Li-Cu alloys[J]. Le Journal de Physique Colloques, 1987, 48(C3): 373.
18 Noble B, Thompson G E. T1 (Al2CuLi) precipitation in aluminium-copper-lithium alloys[J]. Metal Science Journal, 1972, 6(1): 167.
[1] 田亚强, 黎旺, 郑小平, 宋进英, 魏英立, 陈连生. 两相区退火热轧中锰钢碳化物析出行为与组织性能研究[J]. 材料导报, 2019, 33(16): 2765-2770.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed