Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (12): 1978-1982    https://doi.org/10.11896/j.issn.1005-023X.2018.12.007
  材料研究 |
高速电弧喷涂FePSiBNb纳米结构的涂层结构及电化学行为
孙博1,程江波1,刘奇1,冯源1,梁秀兵2
1 河海大学力学与材料学院,南京 211106;
2 军事科学院国防科技创新研究院,北京100010
Structure and Electrochemical Behaviors of FePSiBNb Nanostructured Coatings Prepared by High-speed Arc Spraying
SUN Bo1, CHENG Jiangbo1, LIU Qi1, FENG Yuan1, LIANG Xiubing2
1 College of Mechanics and Materials, Hohai University, Nanjing 211106;
2 National Institute of Defense Technology Innovation, Academy of Military Sciences PLA China, Beijing 100010
下载:  全 文 ( PDF ) ( 2490KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用高速电弧喷涂技术在Q235钢基体表面制备FePSiBNb纳米结构涂层。利用X射线衍射仪(X-ray diffraction, XRD)、场发射电子扫描电镜(Scanning electron microscopy, SEM)、能谱仪(Energy dispersive spectrometer, EDS)和透射电镜(Transmission electron microscope, TEM)对涂层的微观组织结构进行了表征,并系统地研究了涂层在3.5%(质量分数)氯化钠溶液中不同浸泡时间下的电化学腐蚀行为。结果表明:FePSiBNb纳米结构涂层主要由α-Fe相纳米晶组成,平均尺寸为26 nm。涂层呈层状结构且结合紧凑,孔隙率为1.6%。随着浸泡时间的延长,涂层的自腐蚀电位由浸泡1 h时的-826 mV上升到浸泡72 h时的-728 mV,然后逐渐下降到浸泡168 h时的-936 mV;而自腐蚀电流密度呈相反趋势:先由浸泡1 h时的7.235 μA/cm2下降到浸泡72 h时的4.363 μA/cm2,随后逐渐升高到浸泡168 h时的23.05 μA/cm2。与Q235钢基体相比,FePSiBNb纳米结构涂层具有更好的耐腐蚀性能。    
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙博
程江波
刘奇
冯源
梁秀兵
关键词:  高速电弧喷涂  涂层  组织  耐蚀性能    
Abstract: FePSiBNb nanostructure coating was fabricated on Q235 steel substrate by high velocity electrical arc spraying process. The microstructure of coating was characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectrometer and transmission electron microscope. The electrochemical behaviors in 3.5% (mass fraction) NaCl solution of the coatings were studied by the electrochemical test with different immerse time. The results indicate that the FePSiBNb coating consists of nanoscale α-Fe phase, and the average size of the α-Fe crystalline is about 26 nm.The porosity of the coating is 1.6%. With the immerse time increasing, the potential of the coating is increasing from -826 mV at 1 h to -728 mV at 72 h at first, and then it decreases to -936 mV at 168 h. The corrosive current of the coating has a variation from 7.235 μA/cm2 at 1 h to 4.363 μA/cm2 at 72 h, and then it increases to 23.05 μA/cm2 at 168 h. Compared with the Q235 steel, the coating shows the better corrosion resistance.
Key words:  high-speed arc spraying    coatings    microstructure    corrosion resistance
               出版日期:  2018-06-25      发布日期:  2018-07-20
ZTFLH:  TG174.4  
基金资助: 国家自然科学基金(51575159) ;江苏省自然科学基金(BK20141416);江苏省重点研发计划项目(BE2017065)
作者简介:  孙博:男,1993年生,硕士研究生,主要研究方向为涂层及表面工程 E-mail:2621166039@qq.com 程江波:通信作者,男,1979年生,博士,副教授,主要从事涂层、表面工程再制造关键技术研究 E-mail:Chengjiangbo@hotmail.com
引用本文:    
孙博,程江波,刘奇,冯源,梁秀兵. 高速电弧喷涂FePSiBNb纳米结构的涂层结构及电化学行为[J]. 《材料导报》期刊社, 2018, 32(12): 1978-1982.
SUN Bo, CHENG Jiangbo, LIU Qi, FENG Yuan, LIANG Xiubing. Structure and Electrochemical Behaviors of FePSiBNb Nanostructured Coatings Prepared by High-speed Arc Spraying. Materials Reports, 2018, 32(12): 1978-1982.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.12.007  或          http://www.mater-rep.com/CN/Y2018/V32/I12/1978
1 徐滨士,等.高稳定性高速电弧喷涂腐蚀防护技术[M].北京:科学出版社,2011:7.
2 Wu Haipeng,Wang Zhengxi,Liang Zhaoyuan,et al. Literature review on application of numerical simulation in corrosion and protection of metallic materials[J]. Journal of Chongqing University of Technology(Natural Science),2018,32(3):142(in Chinese).
吴海鹏,王正曦,梁钊源,等.数值模拟在金属腐蚀与防护领域的应用研究现状[J].重庆理工大学学报(自然科学),2018,32(3):142.
3 曾荣昌,韩恩厚,等.材料的腐蚀与防护[M].北京:化学工业出版社,2006:1.
4 Guo J H, Wu J W, Ni X J, et al. Electrochemical behavior of Fe-based coatings containing amorphous[J]. Acta Metallurgica Sinica,2007,43(7):780(in Chinese).
郭金花,吴嘉伟,倪晓俊,等.电弧喷涂含非晶相的Fe基涂层的电化学行为[J].金属学报,2007,43(7):780.
5 Gao X, Liu J C, Zhao Y W, et al. Dry sliding tribological behavior of Fe-based amorphous coating deposited by ultrasonic electric-arc spraying process[J]. Chinese Sciencepaper,2015,10(16):1907(in Chinese).
高秀,刘敬春,赵永武,等.超音速电弧喷涂FeCrBNiSiCRE非晶涂层的干滑动摩擦学行为[J].中国科技论文,2015,10(16):1907.
6 Zhang G Z, He D Y, Zhou Z. Frictional wear of arc sprayed coatings containing iron-based amorphous phase[J]. Transactions of the China Welding Institution,2012,33(1):81(in Chinese).
张关震,贺定勇,周正.电弧喷涂铁基非晶涂层摩擦磨损性能分析[J].焊接学报,2012,33(1):81.
7 Cheng J B, Liang X B, Wang Z H, et al. Microstructure and mechanical properties of FeBSiNb metallic glass coatings by twin wire arc spraying[J]. Journal of Thermal Spray Technology,2013,22(4):471.
8 Nerbery A P, Grant P S, Neiser R A. The velocity and temperature of steel droplets during electric arc spra-ying[J]. Surface and Coa-tings Technology,2005,195(1):91.
9 Inoue A, Zhang T, Masumoto T. Al-La-Ni amorphous alloys with a wide supercooled liquid region[J]. Materials Transactions JIM,1989,30(12):965.
10 Souza C A C, Ribeiro D V, Kiminami C S. Corrosion resistance of Fe-Cr-based amorphous alloys: An overview[J]. Journal of Non-Crystalline Solids,2016,442(15):56.
11 Xue X M, Jiang H G, Sui Z T, et al. Influence of phosphorus addition on the surface tension of liquid iron and segregation of phosp-horus on the surface of Fe-P alloy[J]. Metallurgical and Materials Transactions B,1996,27(1):71.
12 Chang Chuntao, Zhang Jianhua, Shen Baolong, et al. Pronounced enhancement of glass-forming ability of Fe-Si-B-P bulk metallic glass in oxygen atmosphere[J]. Journal of Materials Research,2014,29(10):1217.
13 Li R, Zhou Z, He D Y, et al. Wear and corrosion behavior of wire-arc sprayed Fe-based coatings[J]. Journal of Beijing University of Technology,2013,39(10):1576(in Chinese).
李冉,周正,贺定勇,等.Fe基电弧喷涂层磨损及腐蚀行为[J].北京工业大学学报,2013,39(10):1576.
14 Huang H W, Wang Z B, Liu L, et al. Formation of a gradient nanostructured surface layer on a martensitic stainless steel and its effects on the electrochemical corrosion behavior[J]. Acta Metallurgica Si-nica,2015,51(5):513(in Chinese).
黄海威,王振波,刘莉,等.马氏体不锈钢上梯度纳米结构表层的形成及其对电化学腐蚀行为的影响[J].金属学报,2015,51(5):513.
15 Zhang B, Liu L, Li T S, et al. Influence of nanocrystallization on adsorption behavior of Cl- on Fe20Cr alloy in 0.1 mol/L Cl- borate buffer solution[J]. Chinese Journal of Materials Research,2016,30(1):6(in Chinese).张滨,刘莉,李天书,等.纳米化对Fe-20Cr合金在[Cl-]=0.1 mol/L硼酸缓释溶液中Cl-吸附行为的影响[J].材料研究学报,2016,30(1):6.
16 Wang S L, Yi S. The corrosion behaviors of Fe-based bulk metallic glasses in a sulfuric solution at 70 ℃[J]. Intermetallics,2010,18:1950.
17 Souza C A C, May J E, Kuri S E, et al. Influence of the corrosion on the saturation magnetic density of amorphous and nanocrystalline Fe73Nb3Si15.5B7.5Cu1 and Fe80Zr3.5Nb3.5B12Cu1 alloys[J]. Journal of Non-crystalline Solids,2002,304(1-3):210.
18 Liu L, Li Y, Wang F H. Electrochemical corrosion behavior of nanocrystallized materials: Growth of passive film and local pitting corrosion[J]. Acta Metallurgica Sinica,2014,50(2):212(in Chinese).
刘莉,李瑛,王福会.钝性纳米金属材料的电化学腐蚀性为研究:钝化膜生长和局部点蚀行为[J].金属学报,2014,50(2):212.
19 Liu L, Li Y, Wang F H. Pitting corrosion behavior of a sputtered nanocrystalline thin film of austenitic stainless steel in 3.5 mass% NaCl solution[J]. Corrosion Science and Protection Technology,2010,22(4):283(in Chinese).
刘莉,李瑛,王福会.奥氏体不锈钢溅射纳米晶薄膜的点蚀行为研究[J].腐蚀科学与防护技术,2010,22(4):283.
20 Li W, Li D Y. Influence of surface morphology on corrosion and electronic behavior[J]. Acta Materialia,2006,54(2):445.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[3] 胡厅, 万红, 华叶, 龚瑾瑜, 陈兴宇. 石墨表面TiC梯度涂层的制备及结构调制[J]. 材料导报, 2019, 33(z1): 74-77.
[4] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[5] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[6] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[7] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[8] 万晔, 刘晶, 谭丽丽, 陈军修, 东家慧, 杨柯. 镁粉表面钙磷涂层的制备与性能[J]. 材料导报, 2019, 33(z1): 283-287.
[9] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[10] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[11] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[12] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[13] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[14] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[15] 郝贠洪, 李洁, 刘永利. 输电塔既有涂层与新涂层受风沙侵蚀的损伤机理[J]. 材料导报, 2019, 33(8): 1389-1394.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed