Please wait a minute...
材料导报  2019, Vol. 33 Issue (8): 1389-1394    https://doi.org/10.11896/cldb.17100239
  金属与金属基复合材料 |
输电塔既有涂层与新涂层受风沙侵蚀的损伤机理
郝贠洪1,2, 李洁1,2, 刘永利1,2
1 内蒙古工业大学土木工程学院,呼和浩特 010051
2 内蒙古工业大学内蒙古自治区土木工程结构与力学重点实验室,呼和浩特 010051
Damage Mechanism of Existing Coating and New Coating of Transmission Towers Eroded by Wind-blown Sand
HAO Yunhong1,2, LI Jie1,2, LIU Yongli1,2
1 School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051
2 The Inner Mongolia Key Laboratory of Civil Engineering Structure and Mechanics, Inner Mongolia University of Technology, Hohhot 010051
下载:  全 文 ( PDF ) ( 3992KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对输电铁塔杆件新镀锌涂层和既有镀锌涂层进行风沙冲蚀磨损试验,对比分析了两种不同镀锌涂层的冲蚀损伤规律。采用扫描电子显微镜和激光共聚焦显微镜观测两种涂层的不同冲蚀磨损微观形貌,分析了两种涂层材料受风沙冲蚀的损伤机理。研究表明:冲蚀速度越高,两种涂层的冲蚀率越大,且既有涂层的冲蚀率在相同的冲蚀条件下比新镀锌涂层的冲蚀率要高500×10-5~2 750×10-5 mg/g;两种涂层在冲蚀角度α为35~37°时出现了最大冲蚀率,分别为2.5×10-5 mg/g(新涂层)和0.014 mg/g(既有涂层)。两种涂层在冲蚀角度α=90°时冲蚀率最小,分别为0.5×10-5 mg/g(新涂层)和700×10-5 mg/g(既有涂层);两种涂层的冲蚀形貌是从低角度的犁沟型冲蚀沟发展到冲蚀沟和冲蚀坑并存,再到高角度仅存的冲蚀坑形貌。风沙流对输电铁塔杆件新镀锌涂层和既有镀锌涂层的冲蚀磨损过程大致相同,既有镀锌涂层的冲蚀坑和带状冲蚀沟比新镀锌涂层更深、更长,且表面更加粗糙。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郝贠洪
李洁
刘永利
关键词:  输电铁塔杆件涂层  风沙环境  冲蚀  损伤机理    
Abstract: The wind-blown sand erosion and wear tests on the new galvanized coating and existing galvanized coating of transmission tower bar were carried out in this study, and comparative analysis on the erosive damage law of the two types of galvanized coating was conducted as well. Scanning electron microscope and laser scanning confocal microscope were adopted to observe the micro-structures of erosive wear on these two kind of coatings, and analyze their mechanisms of sand erosion and damage. Research results indicated that higher erosion velocity contributed to enlarge the erosion rate of the coatings. Under the same erosion condition, the erosion rate of the existing galvanized coating was 500×10-5 mg/g to 2 750×10-5 mg/g higher than that of the new galvanized coating. When α was 35—37°, both of the coatings exhibited the highest rate of erosion, which were 2.5×10-5 mg/g (new coating) and 0.014 mg/g (existing coating), respectively. When α=90°, both of the coatings presented the lowest rate of erosion, which were 0.5×10-5 mg/g (new coating) and 700×10-5 mg/g (existing coating), respectively. Erosion morphology of these two coatings developed from the low-angle erosion gullies to the coexistence of erosion gullies and erosion pits, and finally only scour pits remained at the high angle. There were primarily the same erosion and wear process of wind-drift sand on the new galvanized coating and existing galvanizes coating of transmission tower, while existing galvanized coating showed deeper and longer erosion pits and zonal erosion gullies , as well as rougher surface than new galvanized coating.
Key words:  coating of transmission tower bar    sand drift environment    erosion    damage mechanism
               出版日期:  2019-04-25      发布日期:  2019-04-28
ZTFLH:  TG174.44  
基金资助: 国家自然科学基金(11862022;11162011;51468049;11662012);国家电网公司科技项目(GCB51201602754)
通讯作者:  13947133205@163.com   
作者简介:  郝贠洪,内蒙古工业大学土木工程学院教授,博士,博士研究生导师。现任内蒙古工业大学土木工程一级学科学术带头人,防灾减灾工程与防护工程二级学科学术带头人。李洁,内蒙古工业大学土木工程学院,在读研究生。主要从事区域特殊环境下工程结构和材料耐久性损伤研究。
引用本文:    
郝贠洪, 李洁, 刘永利. 输电塔既有涂层与新涂层受风沙侵蚀的损伤机理[J]. 材料导报, 2019, 33(8): 1389-1394.
HAO Yunhong, LI Jie, LIU Yongli. Damage Mechanism of Existing Coating and New Coating of Transmission Towers Eroded by Wind-blown Sand. Materials Reports, 2019, 33(8): 1389-1394.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.17100239  或          http://www.mater-rep.com/CN/Y2019/V33/I8/1389
1 Huang Ning, Zheng Xiaojing.Mechanics in Engineering,2007,29(4),10(in Chinese).
黄宁,郑晓静.力学与实践,2007,29(4),10.
2 Gao Tao, Xu Yongfu, Yu Xiao.Journal of Arid Land Resources and Environment,2004(Z1),220(in Chinese).
高涛,徐永福,于晓.干旱区资源与环境,2004(Z1),220.
3 Wang Shigong, Dong Guangrong, Chen Huizhong, et al. Journal of De-sert Research,2000,20(4),349.(in Chinese).
王式功,董光荣,陈惠忠,等.中国沙漠,2000,20(4),349.
4 Naveed M, Renteria A F, Nebel D, et al.Wear, 2015, 342-343,391.
5 Hao Yunhong, Xing Yongming, Zhao Yanru, et al. Journal of Building Meterials,2011,14(3),345(in Chinese).
郝贠洪,邢永明,赵燕茹, 等.建筑材料学报,2011, 14(3),345.
6 Deng Wen, Zhao Xiaoqin, Li Shuangjian, et al. China Surface Enginee-ring,2017,9(3),1(in Chinese).
邓雯,赵小琴,李双健,等.中国表面工程,2017,9(3),1.
7 Hao Yunhong, Liu Yongli, Xing Yongming, et al.China Surface Engineering,2017,30(1),56(in Chinese).
郝贠洪,刘永利,邢永明,等.中国表面工程,2017,30(1),56.
8 Wen Shizhu.Tribology,2008,28(1),1( in Chinese).
温诗铸.摩擦学学报,2008,28(1),1.
9 Dong Gang, Wan Jin, Jiu Yuan, et al. Journal of Materials Science& Engineering,2004,2(6),909(in Chinese).
董刚,万金,九渊,等.材料科学与工程学报,2004,2(6),909 .
10 Dai Tinghai, Liu Bing, Zhang Dongqin, et al. Foundry Technology,2010,1(8),1017(in Chinese).
代廷海,刘炳,张东芹,等.铸造技术,2010,1(8),1017.
11 Hao Yunhong, Ren Ying, Duan Guolong, et al. Tribology,2014,7(4),357(in Chinese).
郝贠洪,任莹,段国龙,等.摩擦学学报,2014,7(4),357.
12 Hao Yunhong, Ya Ruhan, Li Hui, et al. Materials Review B:Research Papers,2018,32(4),1380(in Chinese).
郝贠洪,雅茹罕,李慧,等.材料导报:研究篇,2018,32(4),1380.
13 Dong Gang, Zhang Jiuyuan. Journal of Materials Science and Enginee-ring,2003,21(2),307(in Chinese).
董刚,张九渊.材料科学与工程学报, 2003,21(2),307.
14 Gránásy L. China Surface Engineering, 2004, 3(9), 645.
15 Xu Weisheng, He Guangyu, Cai Zhenbing, et al. China Surface Engineering,2017,23(4),1(in Chinese).
徐伟胜,何光宇,蔡振兵,等.中国表面工程,2017,9(3),1.
[1] 郝贠洪, 雅茹罕, 李慧, 赵呈光. 田口方法下钢化玻璃的冲蚀性能及损伤形貌[J]. CLDB, 2018, 32(8): 1380-1384.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed