Please wait a minute...
材料导报  2019, Vol. 33 Issue (8): 1395-1400    https://doi.org/10.11896/cldb.19010018
  金属与金属基复合材料 |
B2O3对CaO-Al2O3-SiO2基连铸保护渣性能及结构的影响
王杏娟1,2, 靳贺斌1,2, 朱立光1,2, 朴占龙2,3, 王博1,2, 曲硕1,2
1 华北理工大学冶金与能源学院,唐山 063210
2 河北省高品质钢连铸工程技术研究中心,唐山 063000
3 北京科技大学冶金与生态工程学院,北京 100083
Effect of B2O3 on Properties and Structure of CaO-Al2O3-SiO2 Continuous Casting Mold Flux
WANG Xingjuan1,2, JIN Hebin1,2, ZHU Liguang1,2, PIAO Zhanlong2,3, WANG Bo1,2, QU Shuo1,2
1 College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210
2 Hebei Engineering Research Center of High Quality Steel Continuous Casting, Tangshan 063000
3 School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083
下载:  全 文 ( PDF ) ( 3456KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用热力学软件计算了CaO-Al2O3-SiO2三元相图和CaO-Al2O3-B2O3-SiO2四元相图。根据低熔点选择原则,确定了B2O3和CaO-Al2O3-SiO2渣系主要成分的具体含量。采用Brookfield旋转黏度计和DHTT-Ⅱ型熔化结晶温度测定仪对不同B2O3含量保护渣的熔化性能和结晶性能进行了实验研究。进一步采用分子动力学软件对熔渣进行模拟,分析了保护渣的微观结构,深入探讨了保护渣性能与结构之间的关系。结果表明,B2O3对CaO-Al2O3-SiO2渣系的黏度和转折温度有着重要的影响。当B2O3含量不高于9%时,保护渣的黏度和转折温度随着B2O3含量的提高显著降低。保护渣中B2O3含量的提高导致保护渣结晶孕育时间和完全结晶时间延长。相对于Al-O和Si-O配位结构,B-O配位结构最为稳定。体系中B离子可以代替Si、Al离子,形成B-O三配位结构与B-O四配位结构,体系结构由紧密的架状结构转变为松弛的层状结构,熔渣聚合度降低、黏度也降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王杏娟
靳贺斌
朱立光
朴占龙
王博
曲硕
关键词:  保护渣  黏度  三氧化二硼  微结构  分子动力学计算    
Abstract: In this study, thermodynamics software was employed to calculate the ternary phase diagram of CaO-Al2O3-SiO2 and the quaternary phase diagram of CaO-Al2O3-B2O3-SiO2 first. Then, the specific contents of the main components of B2O3 and CaO-Al2O3-SiO2 slag system were determined according to the principle of low melting point selection. The melting and crystallization properties of B2O3 mold flux with various contents were studied experimentally by means of Brookfield rotational viscometer and DHTT-II melting crystallization temperature tester. Furthermore, the simulation of the molten slag was conducted by the molecular dynamics software. The microstructure of the mold flux was analyzed and an in-depth discussion of the relationship between the properties and the structure of the mold flux was carried out. It could be found from the results that B2O3 exerted an exceptional effect on the viscosity and transition temperature of CaO-Al2O3-SiO2 system. When the content of B2O3 was no higher than 9%, the increase of B2O3 content would result in sharp reduction in viscosity and transition temperature of the slag. Additio-nally, the growing B2O3 content in the mold flux also leaded to prolonging of the crystallization time and complete crystallization time of the mold flux. The B-O coordination structure is the most stable compared to the Al-O and Si-O coordination structures. In this system, B ions can replace Si and Al ions to form a B-O tricoordinate structure and a B-O tetracoordinate structure. Meanwhile, the structure altered from a compact framework structure to a relaxed layer structure, accompanied by a lowered slag polymerization degree and a declined viscosity.
Key words:  mold flux    viscosity    diboron trioxide    microstructure    molecular dynamics simulation
               出版日期:  2019-04-25      发布日期:  2019-04-28
ZTFLH:  TF777  
基金资助: 国家自然科学基金(51774141);国家自然科学基金青年基金(51404088);河北省自然科学基金(E2015209217;E2018209195)
作者简介:  王杏娟,华北理工大学冶金与能源学院副教授。2002年河北理工学院冶金系本科毕业,2005年同校系硕士研究生毕业留校任教,2013年获北京科技大学博士学位,email: wxingjuan@ncst.edu.cn。主要研究方向为无缺陷凝固与高效化连铸的技术创新与工艺优化。
引用本文:    
王杏娟, 靳贺斌, 朱立光, 朴占龙, 王博, 曲硕. B2O3对CaO-Al2O3-SiO2基连铸保护渣性能及结构的影响[J]. 材料导报, 2019, 33(8): 1395-1400.
WANG Xingjuan, JIN Hebin, ZHU Liguang, PIAO Zhanlong, WANG Bo, QU Shuo. Effect of B2O3 on Properties and Structure of CaO-Al2O3-SiO2 Continuous Casting Mold Flux. Materials Reports, 2019, 33(8): 1395-1400.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010018  或          http://www.mater-rep.com/CN/Y2019/V33/I8/1395
1 Hooli P O. Iron-making and Steelmaking,2002,29(4), 293.
2 Takeuchi E, Brimacombe J K. Metallurgical Transactions B, 1984, 15(3), 493.
3 Tang P, Gao J X, Wen G H. Steelmaking, 2017, 33(3), 1(in Chinese).
唐萍, 高金星, 文光华.炼钢, 2017, 33(3), 1.
4 Fu X, Wen G, Liu Q, et al. Steel Research International, 2015, 86(2), 110.
5 Omoto T, Suzuki T, Ogata H. Shinagawa Technical Report, 2007, 50, 57.
6 Hammerschmid P, Janke D. Steel Research, 1991, 62(9), 395.
7 Cai Z, Song B, Li L, et al. Metals, 2018, 8(10), 737.
8 Liu Z, Tang P, Wen G H, et al. Chinese Journal of Rare Metals, 2006, 30(4), 457(in Chinese).
刘著, 唐萍, 文光华, 等.稀有金属, 2006, 30(4), 457.
9 Yu X, Wen G H, Tang P, et al. Journal of Chongqing University, 2011, 34(1), 66(in Chinese).
于雄, 文光华, 唐萍, 等. 重庆大学学报, 2011, 34(1), 66.
10 Li J L. Study on the physics and chemistry of mold flux for high aluminum steel casting. Ph.D. Thesis, University of Science and Technology Beijing, China, 2016(in Chinese).
黎江玲. 高铝钢连铸保护渣的物理化学研究. 博士学位论文, 北京科技大学, 2016.
11 Wu T. Study on microstructure and macroproperty of mould fluxes with low-reactivity. Ph.D. Thesis, Chongqing University, China, 2017(in Chinese).
吴婷. 低反应性连铸保护渣熔体的微结构特征及宏观性能研究. 博士学位论文. 重庆大学, 2017.
12 Wang X J, Tian K, Fan Y P, et al. Materials Review B:Research Papers, 2018, 32(12), 2100(in Chinese).
王杏娟, 田阔, 樊亚鹏, 等. 材料导报:研究篇, 2018, 32(12), 2100.
13 Yu X. Fundamental research on the mold slags used for high-Al steels. Ph.D. Thesis, Chongqing University, China, 2011(in Chinese).
于雄. 高铝钢连铸结晶器保护渣的基础研究. 博士学位论文,重庆大学,2011.
14 Zhu L G, Hu B, Wang X J, et al. Materials Review A:Review Papers, 2013, 27(11), 77(in Chinese).
朱立光, 胡斌, 王杏娟, 等. 材料导报:综述篇, 2013, 27(11), 77.
15 Long X, He S P, Wang Q. Journal of Iron and Steel Research, 2018, 30(1), 21(in Chinese).
龙潇, 何生平, 王谦.钢铁研究学报, 2018, 30(1), 21.
16 Alder B J, Wainwright T E. Journal of Chemical Physics, 1957, 27(5), 1208.
17 Cui S X, Hu H Q, Xiao X G, et al. Journal of Liaocheng University(Natural Science Edition), 2005, 18(1), 30(in Chinese).
崔守鑫, 胡海泉, 肖效光, 等. 聊城大学学报(自然科学版), 2005, 18(1), 30.
18 Soules T F. Journal of Chemical Physics, 1979, 71(11), 4570.
19 Rosenthal A B, Garofalini S H. Journal of the American Ceramic Society, 2010, 70(11), 821.
20 Delaye J M, Louis-Achille V, Ghaleb D. Journal of Non-crystalline Solids, 1997, 210(2-3), 232.
21 Zhang Z T, Wen G, Tang P, et al. ISIJ International, 2008, 48(6), 739.
22 Lu B X, Chen K, Wang W L, et al. Metallurgical and Materials Tran-sactions B, 2014, 45(4), 1496.
23 Ren Z X, Jian L Z, Zhi Y W, et al. Steel Research International, 2017, 88(4),1600241.
24 Liang X P, Lu D X, Wang Y, et al. Journal of Chongqing University, 2015, 38(5), 135(in Chinese).
梁小平, 陆东旭, 王雨, 等.重庆大学学报, 2015, 38(5), 135.
[1] 王宗乾, 杨海伟. pH值对海藻酸钠溶液黏度及体系中氢键的影响规律[J]. 材料导报, 2019, 33(8): 1289-1292.
[2] 弯艳玲, 张猛, 杨健, 于化东. 多尺度微结构对铝合金表面疏水性能的影响[J]. 材料导报, 2019, 33(16): 2715-2719.
[3] 薛宗伟, 李心慰, 栾旭, 罗旭东, 徐若梦, 吴锋. 纳米氧化锆对氧化镁陶瓷抗热震性的影响[J]. 材料导报, 2019, 33(10): 1630-1633.
[4] 王爱国,吕邦成,刘开伟,马 雪,徐海燕,谭京梅. 珊瑚骨料混凝土性能及微结构的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1528-1533.
[5] 尹雪亮, 陈敏, 王楠, 徐磊, 彭可武. Y2O3添加对MA-CA2-CA6复合材料烧结行为的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1357-1361.
[6] 肖水清, 刘杰, 肖白军, 邓欣, 伍尚华. 实现Ti(C,N)基金属陶瓷强韧化的技术路径[J]. 《材料导报》期刊社, 2018, 32(7): 1129-1138.
[7] 宋昊, 谢友均, 龙广成. 水泥乳化沥青砂浆研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 836-846.
[8] 陈渊, 蓝永庭, 张克实, 蔡敢为, 胡桂娟. AZ31镁合金微结构关联的孪生形核与长大统计分析[J]. 材料导报, 2018, 32(20): 3566-3572.
[9] 郑奎,袁昌来,周星星,王维清,许积文,周昌荣. Ba0.04Bi0.48Na0.48TiO3-SrTiO3陶瓷微结构和储能性能[J]. 《材料导报》期刊社, 2018, 32(2): 171-175.
[10] 孙国文, 孙伟, 王彩辉. 现代混凝土传输行为与其微结构之间关系的研究方法及其进展[J]. 材料导报, 2018, 32(17): 3010-3022.
[11] 赵丽娟, 田晓, 姚占全, 江丽萍. Fe及Fe83Ga17和Fe83Ga17Pr0.3合金的微结构与磁致伸缩性能[J]. 材料导报, 2018, 32(16): 2832-2836.
[12] 于江, 程龙, 李林萍, 叶奋, 宋卿卿. KSHD温拌剂对新疆岩沥青改性沥青老化动力特性的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2418-2424.
[13] 陈明鹏, 张裕敏, 张瑾, 柳清菊. 苯系物(BTEX)检测气敏材料研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2278-2287.
[14] 贺春林,高建君,王苓飞,马国峰,刘岩,王建明. N2流量对反应共溅射TiN/Ni纳米复合膜结构和结合强度的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2038-2042.
[15] 王杏娟,田阔,樊亚鹏,王浩楠,吴哲. TiO2对连铸三元无氟CaO-SiO2-TiO2渣系特性的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2100-2104.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed