Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (8): 1357-1361    https://doi.org/10.11896/j.issn.1005-023X.2018.08.028
  材料研究 |
Y2O3添加对MA-CA2-CA6复合材料烧结行为的影响
尹雪亮1,2, 陈敏1, 王楠1, 徐磊1, 彭可武1,2
1 东北大学冶金学院,沈阳 110819;
2 辽宁科技学院辽宁省本溪低品位非伴生铁矿优化应用重点实验室,本溪 117000
Effect of Y2O3 Addition on Sintering Behavior of MA-CA2-CA6 Composite
YIN Xueliang1,2, CHEN Min1, WANG Nan1, XU Lei1, PENG Kewu1,2
1 School of Metallurgy, Northeastern University, Shenyang 110819;
2 Liaoning Key Laboratory of Optimization andUtilization of Non-associated Low-grade Iron Ore in Benxi, Liaoning Institute of Science and Technology,Benxi 117000
下载:  全 文 ( PDF ) ( 2305KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为适应材料轻量化的发展需要,在1 400~1 600 ℃条件下制备了MA-CA2-CA6复合材料,并考察了添加Y2O3对该复合材料烧结行为的影响。结果表明,添加的Y2O3固溶入了CA6、MA相中,Y3+通过取代Ca2+、Mg2+有效地促进了MA晶粒的提前长大,抑制了CA6晶粒的异常长大;另一方面,添加过量的Y2O3与体系中的Al2O3反应生成Y3Al5O12新相,使得CA6相的生成量减少,同时由于MA相提前长大限制了CA6相的生长空间,进一步促进了CA6晶粒形貌由片状向等轴状趋势发展。以上因素共同作用,促进了MA-CA2-CA6复合材料的烧结行为。当Y2O3的添加量为2%时,经1 600 ℃保温2 h烧成后,试样的显气孔率由19.2%下降至4.8%,体积密度由2.78 g/cm3上升至3.24 g/cm3,制得的MA-CA2-CA6复合材料中MA、CA2、CA6及少量Y3Al5O12晶相呈现交织分布,显微结构致密,力学性能得到改善。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尹雪亮
陈敏
王楠
徐磊
彭可武
关键词:  轻量化  复合材料  烧结行为  显微结构  力学性能    
Abstract: In order to adapt the demands for the lightweight of materials, MA-CA2-CA6 composite was prepared at 1 400—1 600 ℃ by addition of Y2O3 micro powder, and the effect of Y2O3 addition on densification behavior of the composite was discussed. The results showed that the added Y2O3 dissolved to CA6, MA phases by substituting Ca2+, Mg2+, which mainly promoted the growth of MA grains in advance, while the abnormal growth of CA6 grains with high aspect ratio were inhibited. Furthermore, the excess Y2O3 reacted with Al2O3 to form the Y3Al5O12 phase, which further inhibited the formation and abnormal growth of CA6 grains with high aspect ratio, and the growth of MA grains in advance occupied the growing space of CA6 grains, thus the microstructure of CA6 grains was a more equiaxed morphology, instead of anisotropic growth to platelet structure. Based on those factors, the sintering activity of MA-CA2-CA6 composite was synergistically promoted. As a result, MA-CA2-CA6 composite was obtained, with the apparent porosity decreased from 19.2% to 4.8% and the bulk density increased from 2.78 g/cm3 to 3.24 g/cm3 after firing at 1 600 ℃ for 2 h by addition of 2% Y2O3, and the crystal phase of MA, CA2, CA6 and a spot of Y3Al5O12 phases was interleaved distributed with textured microstructure in MA-CA2-CA6 composite, which is considered to be favorable to improve the mechanical properties of MA-CA2-CA6 composite.
Key words:  lightweight    composite    sintering    microstructure    mechanical properties
               出版日期:  2018-04-25      发布日期:  2018-05-11
ZTFLH:  TB33  
基金资助: 国家自然科学基金(51174049;51374062;51574065;51574066);辽宁省教育厅资助项目(L2015275(1506181); L2015273(1506161);L2017lkyfwdf-04)
通讯作者:  陈敏:通信作者,男,1969年生,教授,博士研究生导师,主要研究方向为复合材料 E-mail:chenm@smm.neu.edu.cn   
作者简介:  尹雪亮:男,1980年生,博士,主要研究方向为复合材料 E-mail:yxliang1007@163.com
引用本文:    
尹雪亮, 陈敏, 王楠, 徐磊, 彭可武. Y2O3添加对MA-CA2-CA6复合材料烧结行为的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1357-1361.
YIN Xueliang, CHEN Min, WANG Nan, XU Lei, PENG Kewu. Effect of Y2O3 Addition on Sintering Behavior of MA-CA2-CA6 Composite. Materials Reports, 2018, 32(8): 1357-1361.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.08.028  或          http://www.mater-rep.com/CN/Y2018/V32/I8/1357
1 De Aza A H, Iglesias J E, Pena P, et al. Ternary system Al2O3-MgO-CaO: Part Ⅱ, phase relationships in the subsystem Al2O3-MgAl2O4-CaAl4O7[J].Journal of the American Ceramic Society,2000,83(4):919.
2 Durán T, Serena S, Pena P, et al. Experimental establishment of the CaAl2O4-MgO and CaAl4O7-MgO isoplethal sections within the Al2O3-MgO-CaO ternary system[J].Journal of the American Ceramic Society,2008,91(2):535.
3 Ganesh I, Bhattacharjee S, Saha B P, et al. A new sintering aid for magnesium aluminate spinel[J].Ceramics International,2001,27(7):773.
4 Altay A, Carter C B, Rulis P, et al. Characterizing CA2 and CA6 using elnes[J].Journal of Solid State Chemistry,2010,183(8):1776.
5 Ghosh A,Das S K,Biswas J R, et al. The effect of ZnO addition on the densification and properties of magnesium aluminate spinel[J].Ceramics International,2000,26(6):605.
6 Xu L,Chen M, Huang W J, et al. Effects of CaO content on sintering and lightweight of Al2O3-MgO-CaO refractories[J].Materials Research Innovations,2015,19(S5):212.
7 徐磊,陈敏.Al2O3-MgO-CaO系耐火材料烧结性能的研究[C]∥第十七届全国冶金反应工程学学术会议论文集.中国金属学会,2013:229.
8 Yan W, Li N, Han B Q. High-strength lightweight spinel refractories[J].American Ceramic Society Bulletin,2005,84(4):9201.
9 Maschio R D, Fabbri B, Fiori C. Industrial applications of refractories containing magnesium aluminate spinel[J].Transactions of the Indian Ceramic Society,1988,8(3):121.
10 Tchamba A B, Sofack J C, Yongue R, et al. Formulation of calcium dialuminate (CaO·2Al2O3) refractory cement from local bauxite[J].Journal of Asian Ceramic Societies,2015,3(2):164.
11 Yi S, Huang Z H, Huang J T, et al. Novel calcium hexaluminate/spinel-alumina composites with graded microstructures and mechanical properties[J].Scientific Reports,2014,4(4):1.
12 An L, Chan H M. R-curve behavior of in-situ-toughened Al2O3∶CaAl12O19 ceramic composites[J].Journal of the American Ceramic Society,1996,79(12):3142.
13 Li L P, Yan Y, Fan X Z, et al. Low-temperature synthesis of cal-cium-hexaluminate/magnesium-aluminum spinel composite ceramics[J].Journal of the European Ceramic Society,2015,35(10):2923.
14 Tripathi H S, Singla S, Ghosh A. Synthesis and densification beha-viour of magnesium aluminate spinel: Effect of Dy2O3[J].Ceramics International,2009,35(6):2541.
15 Sinhamahapatra S, Dana K, Ghosh A, et al. Dynamic thermal study to rationalize the role of titania in reaction sintering of magnesia-alumina system[J].Ceramics International,2015,41(1):1073.
16 Ritwik S, Tripathi H S, Ghosh A. Reaction sintering of different spinel compositions in the presence of Y2O3[J].Materials Letters,2004,58(16):2186.
17 Liu X Y, Yang D X, Huang Z H, et al. In-situ synthesis of porous calcium hexa-aluminate ceramics and growth mechanism of the plate-like grains[J].Ceramics International,2015,41(10):14727.
18 De La Iglesia P G, García-Moreno O, Torrecillas R, et al. Influence of different parameters on calcium hexaluminate reaction sintering by spark plasma[J].Ceramics International,2012,38(7):5325.
19 Ceylantekin R, Aksel C. Improvements on the mechanical properties and thermal shock behaviours of MgO-spinel composite refractories by ZrO2 incorporation[J].Ceramics International,2012,38(2):995.
20 Jonas S, Nadachowski F, Szwagierczak D, et al. Thermal expansion of CaAl4O7-based refractory compositions containing MgO and CaO additions[J].Journal of the European Ceramic Society,2006,26(12):2273.
21 Aksel C, Aksoy T. Improvements on the thermal shock behaviour of MgO-spinel composite refractories by incorporation of zircon-3mol% Y2O3[J].Ceramics International,2012,38(5):3673.
22 Diaz L A, Torrecillas R, De Aza A H, et al. Effect of spinel content on slag attack resistance of high alumina refractory castables[J].Journal of the European Ceramic Society,2007,27(16):4623.
23 Luz A P, Braulio M A L, Tomba Martinez A G, et al. Slag attack evaluation of in situ spinel-containing refractory castables via experimental tests and thermodynamic simulations[J].Ceramics International,2012,38(2):1497.
24 Dominguez C, Chevalier J, Torrecillas R, et al. Microstructure development in calcium hexaluminate[J].Journal of the European Ceramic Society,2001,21(3):381.
25 Dominguez C, Torrecillas R. Influence of Fe3+ on sintering and microstructural evolution of reaction sintered calcium hexaluminate[J].Journal of the European Ceramic Society,1998,18(9):1373.
26 Rice R W. Evaluating porosity parameters for porosity-property relations[J].Journal of the American Ceramic Society,1993,76(7):1801.
27 Dominguez C, Chevalier J, Torrecillas R, et al. Thermomechanical properties and fracture mechanisms of calcium hexaluminate[J].Journal of the European Ceramic Society,2001,21(7):907.
28 Wang W, Fu Z, Wang H, et al. Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB2 ceramics[J].Journal of the European Ceramic Society,2002,22(7):1045.
29 Uribe R, Baudín C. Influence of a dispersion of aluminum titanate particles of controlled size on the thermal shock resistance of alumina[J].Journal of the American Ceramic Society,2003,86(5):846.
30 Bueno S, Moreno R, Baudín C. Reaction sintered Al2O3/Al2TiO5 microcrack-free composites obtained by colloidal filtration[J].Journal of the European Ceramic Society,2004,24(9):2785.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[4] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[5] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[6] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[7] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[8] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[9] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[10] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[11] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[12] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[13] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[14] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[15] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed