Please wait a minute...
材料导报  2018, Vol. 32 Issue (17): 3010-3022    https://doi.org/10.11896/j.issn.1005-023X.2018.17.014
  无机非金属及其复合材料 |
现代混凝土传输行为与其微结构之间关系的研究方法及其进展
孙国文1, 孙伟2, 王彩辉1
1 石家庄铁道大学材料科学与工程学院,石家庄 050043;
2 东南大学江苏省土木工程材料重点实验室,南京 211189
Relationship Between the Transport Behavior of Modern Concrete and Its Microstructures: Research Methods and Progress
SUN Guowen1, SUN Wei2, WANG Caihui1
1 School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043;
2 Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing 211189
下载:  全 文 ( PDF ) ( 2560KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 开裂是导致结构混凝土过早出现劣化和提前退出服役的主要原因,但其劣化本质上均是侵蚀性介质通过混凝土自身的孔隙、微裂纹或者荷载作用下的裂缝传输所致,因此,要揭示现代混凝土的劣化本质,必须科学地认识并建立其宏观、微观之间的本构关系。
   过去国内外提出的关于侵蚀性介质在混凝土材料中的传输理论,如Fick定律或者Darcy定律,其本质上属于唯象理论,尽管可以描述离子传输的现象,但关键参数如扩散系数、渗透系数均是通过试验回归,并没有深究现象背后的物理意义。更重要的是,这些理论难以确定混凝土微结构在各尺度层次上对离子传输的影响,进而难以从根源上对混凝土微结构进行调控,难以调节混凝土侵蚀性介质传输的性能。而现代混凝土具有多孔、多相、多层次和多尺度特征,因此需要逐尺度建立侵蚀性介质在混凝土中的传输本构关系。
   本文以氯离子(诱发钢筋锈蚀导致混凝土劣化最主要的原因之一)在现代混凝土中的扩散为例,介绍了现代混凝土宏观、微观之间传输本构关系建立的理论方法,影响氯离子在现代混凝土中传输行为的主要微结构特征参数(如硬化水泥石的水化产物及其空间分布、界面过渡区孔隙分布、界面过渡区体积分数),混凝土在各尺度上已建立的氯离子扩散与其微结构特征参数之间的本构关系等的国内外研究现状。
   现有的基于细观力学建立的各尺度传输模型,如常用的自洽模型、广义自洽模型和有效介质理论等均假定夹杂是球形的,夹杂与基体之间保持完好,而对混凝土这种复杂的复合材料需充分考虑夹杂形貌、夹杂体分比以及夹杂与基体之间存在的界面过渡区对传输行为的影响。在混凝土微结构特征参数预测模型中,已初步建立了球形骨料周围界面过渡区体积分数预测模型并充分考虑了界面之间的重叠程度,界面过渡区孔结构分布模型,硅酸盐水泥水化过程的模拟以及水化产物体积分数计算模型。这些模型为混凝土宏观、微观之间的传输本构关系的建立奠定了基础。
   本文还系统地介绍了从影响离子传输的最小尺度即纳米尺度逐步过渡到宏观尺度的建模过程。最后指出各尺度理论预测模型和微结构特征参数定量表征方面目前存在的不足和今后研究的重点,以期为结构混凝土微结构的调控和服役寿命的预测研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙国文
孙伟
王彩辉
关键词:  现代混凝土  微结构  多尺度  传输行为  氯离子    
Abstract: Cracking is the main cause of premature deterioration and early withdrawal from service of structural concrete. The deterioration is mainly caused by the propagation of aggressive media through the pores of concrete itself, microcracks or cracks under load. Therefore, to reveal the essence of deterioration of modern concrete, its macroscopic and microscopic constitutive relations should be understood and established scientifically.
   In the past, the transport theory of aggressive media in concrete materials at home and abroad, like Fick’s or Darcy’s law, essentially belong to phenomenological theory. Although these theories can describe the phenomena of ion transport, the key parameters such as diffusion coefficients and permeability coefficients are obtained by experiments regression, and the physical meaning behind the phenomenon is not dug out. What’s more, it is difficult to determine the influence of the concrete microstructure at each scale on the transport of ions, not to mention the control of concrete microstructure from its root, and adjustment of the transport behaviors of the aggressive media. The modern concrete features porous, multi-phase, multi-level and multi-scale, therefore, it is necessary to establish the transport constitutive relationship of aggressive media on a scale-by-scale basis.
   The diffusion of chloride ions (one of the most important reasons of concrete deterioration caused by corrosion of steel bars) in modern concrete is taken as an example in this article. A series of domestic and foreign research findings are introduced, including the theoretical scheme for the transport constitutive relations between the macroscopic and the microscopic of the modern concrete, the main microstructure parameters (such as hydration products of hardened cement paste and its spatial distribution, the pore distribution and the volume fraction of the interfacial transition zone) influencing the transport behavior of chloride ions, as well as the established transport constitutive relations on chloride ion diffusion and the microstructure parameters of concrete at each scale.
   The existing transport models at each scale based on meso-mechanical theory, like self-consistent scheme, generalized self-consistent scheme, effective medium theories, assume that the inclusions are spherical and remain intact with the matrix. However, it must be taken into serious consideration that the influence of inclusion morphology, inclusion ratio and interfacial transition zone between inclusion and matrix on the transport behavior of complicated concrete composites. In the prediction model of concrete microstructure parameters, a volume fraction prediction model of interfacial transition zone around the spherical aggregate has been preli-minarily established and the overlap between interfaces has been fully taken into account. The pore structure distribution model of the interface transition zone, the simulation of hydration process for Portland cement and the volume fraction calculation model of hydration products are partially presented. In a word, these models lay a solid foundation for the establishment of transport constitutive relations between macroscopic and microscopic concrete.
   This article also systematically introduces the modeling process from the minimum scale, namely from the nano scale to the macro scale, which affect the ion transport. Finally, it points out the current deficiencies in the quantitative prediction of theoretical prediction model at each scale and microstructure parameters, and the focus of future study, aiming at providing some valuable ideas for the regulation of the microstructure of structural concrete and the prediction of the service life.
Key words:  modern concrete    microstructure    multi-scale    transport behavior    chloride ions
                    发布日期:  2018-09-19
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51478278;51408380);河北省自然科学基金(E2014210149)
作者简介:  孙国文:男,1977年生,博士,副教授,主要从事结构混凝土微结构定量表征 E-mail:sunguowen_2003@163.com
引用本文:    
孙国文, 孙伟, 王彩辉. 现代混凝土传输行为与其微结构之间关系的研究方法及其进展[J]. 材料导报, 2018, 32(17): 3010-3022.
SUN Guowen, SUN Wei, WANG Caihui. Relationship Between the Transport Behavior of Modern Concrete and Its Microstructures: Research Methods and Progress. Materials Reports, 2018, 32(17): 3010-3022.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.17.014  或          http://www.mater-rep.com/CN/Y2018/V32/I17/3010
1 孙伟.现代混凝土材料与结构服役特性的研究进展[J].混凝土世界,2009(7):20.
2 阎培渝.现代混凝土的特点[J].混凝土,2009(1):3.
3 Garboczi E J, Bentz D P. Computer simulation of the diffusivity of cement-based materials[J].Materials Science,1992,27(8):2083.
4 Sun G W. Transport behaviors and multi-scale modeling of chloride ions in cement-based composite materials[D].Naijing: Southeast University,2012(in Chinese).
孙国文.氯离子在水泥基复合材料中的传输行为与多尺度模拟[D].南京:东南大学,2012.
5 Zhu Z G, Chen H S, Liu L, et al. Multi-scale modelling for diffusivity based on practical estimation of interfacial properties in cementitious materials[J].Powder Technology,2017,307:109.
6 Jin L, Zhang R B, Du X L. Multi-scale analysis for the chloride diffusivity in concrete subjected to low-level stress[J].Engineering Mechanics,2017,34(3):84(in Chinese).
金浏,张仁波,杜修力.低应力水平下混凝土中氯离子扩散行为多尺度分析方法[J].工程力学,2017,34(3):84.
7 Garboczi E J, Bentz D P. Computer simulation of the diffusivity of cement-based materials[J].Journal of Materials Science,1992,27(8):2083.
8 Cao L Q. Multi-Scale coupling of material properties andnumerical simulations[J].World Sci-Tech R & D,2002,24(6):23(in Chinese).
曹礼群.材料物性的多尺度关联与数值模拟[J].世界科技研究与发展,2002,24(6):23.
9 杜善义,王彪.复合材料细观力学[M].北京:科学出版社,1998.
10 Cui J Z, Cao L Q. Finite element method bansed on two-scale asymptotic analysis[J]. Mathematica Numerica Sinica,1998,20(1):89(in Chinese).
崔俊芝,曹礼群.基于双尺度渐近分析的有限元算法[J].计算数学,1998,20(1):89.
11 Chen Y L, Ma Y, Pan F, et al. Research progress in multi-sacale mechanics of composite materials[J].Solid Mechanics,2018,39(1):1(in Chinese).
陈玉丽,马勇,潘飞,等.多尺度复合材料力学研究进展[J].固体力学学报,2018,39(1):1.
12 Stora E, He Q C, Bary B. A mixed composite spheres assemblage model for the transport properties of random heterogeneous mate-rials with high contrast[J].Applied Physics,2006,100(8):084910.
13 Bruggeman D A G. Bereclmung verschiedener Physikalischer Konstanten von heterogenen Substanzen[J].Annalen der Physik,1935,24:636.
14 Christensen R M, Lo K H. Solution for the effective shear properties in three phase sphere and cylinder models[J].Mechanics and Physics of Solids,1979,27(4):315.
15 Benveniste Y. A new approach to the application of Mori-Tanaka′s theory in composite materials [J].Mechanics of Materials,1987,6(2):147.
16 Maxwell J C. A Treatise on electricity and magnetism[M].Oxford:Clarendon Press,1873.
17 Pivonka E, Hellmich C,Smith D. Microscopic effects on chloride diffusivity of cement pastes-a scale-transition analysis[J].Cement and Concrete Research,2004,34(12):2251.
18 Zheng Q S, Du D X. An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution[J].Mechanics and Physics of Solids,2001,49(11):2765.
19 Mindess S, Young J F. Concrete[M].New Jersey:Prentice-Hall Englewood Cliffs,1981.
20 IUPAC. Manual of symbols and terminology, appendix 2, part 1[J]. Pure and Applied Chemistry,1972,31:578.
21 Jennings H M. Colloid model of C-S-H and implications to the problem of creep and shrinkage[J].Materials and Structures,2004,37:59.
22 赵铁军.混凝土渗透性[M].北京:科学出版社,2006.
23 Mehta P K, Monteiro P J M. Concrete-microstructures, properties, and materials[M].New York:McGraw-Hill,2006.
24 Powers T C, Copeland L E, Mann H M. Capillary continuity or discontinuity in cement pastes[J].PCA Bulletin,1959,1(110):2.
25 Thomas J, Jennings H M. The surface area of cement paste as mea-sured by neutron scattering: Evidence for two C-S-H morphologies[J].Cement and Concrete Research,1998,28(6):897.
26 Bentz D P, Garboczi E J. Digital-image-based computer modeling of cement-based materials[C]//Digital Image Processing: Techniques and Application in Civil Engineering. New York,1993:63.
27 Kondo R, Ueda S. Kinetics and mechanism of the hydration of cements[C]//The 5th International Symposium on the Chemistry of Cement. Toyko,1968:203.
28 Frohnsdorff G J C, Freyer W G, Johnson P D. Kinetic modeling of hydration processes[C]//The 5th International Symposium on the Chemistry of Cement.Toyko,1968:321.
29 Pommersheim J M, Clifton J R. Mathematical modeling of tricalcium silicate hydration[J].Cement and Concrete Research,1979,9(6):765.
30 Taylor H, Newbury D. An electron microprobe study of a mature cement paste[J].Cement and Concrete Research,1984,14(4):565.
31 Jennings H M, Johnson S K. Simulation of microstructure development during the hydration of a cement compound[J].American Ceramic Society,1986,69(11):790.
32 陈惠苏.水泥基复合材料集料-浆体界面过渡区微观结构的计算机模拟及相关问题研究[D].南京:东南大学,2003.
33 Zheng J J,Pang X W,Xiong F F. A numerical method for predicting the initial setting time of cement paste and evaluation of influencing factors[J].The Chinese Ceramic Society,2008,36(7):927.
34 Shah S P. High performance concrete: Past, present and future[C]//High Performance Concrete-Workability, Strength and Durability. Hong Kong University of Science and Technology. Hong Kong,2000:3.
35 Yang C C, Su J K. Approximate migration coefficient of interfacial transition zone and the effect of aggregate content on the migration coefficient of mortar[J].Cement and Concrete Research,2002,32(10):1559.
36 Winslow D N, Cohen M D, Bentz D P, et al. Percolation and pore structure in mortars and concrete[J].Cement and Concrete Research,1994,24:25.
37 Scrivener K L, Bentur A, Pratt P L, et al. Quantitative characterisation of the transition zone in high strength concretes[J].Advances in Cement Research,1988,1(4):230.
38 Breton D, Ollivier J P, Ballivy G. Diffusivity of chloride ions in the transition zone between cement paste and granite[C]//Interfaces between Cementitious Composites. London,1992:279.
39 Bourdette B, Ringot E, Ollivier J P. Modeling of the transition zone porosity[J].Cement and Concrete Research,1995,25(4):741.
40 Ping X, Beaudoin J J, Brousseau R. Flat aggregate-portland cement paste interfaces, Ⅰ. Electrical conductivity models[J].Cement and Concrete Research,1991,21(4):515.
41 Xie P, Beaudoin J, Borusseau R. Flat aggregate-portland cement paste interfaces, Ⅱ. Transition zone formation[J].Cement and Concrete Research,1991,21(5):718.
42 Garboczi E J, Bentz D P. Multiscale analytical/numerical theory of the diffusivity of concrete[J].Advanced Cement Based Materials,1998,8(2):77.
43 Princigalloa A, Breugelb K V, Levitaa G. Influence of the aggregate on the electrical conductivity of Portland cement concretes[J].Cement and Concrete Research,2003,33(11):1755.
44 Yang C C, Su J K. Approximate migration coefficient of interfacial transition zone and the effect of aggregate content on the migration coefficient of mortar[J].Cement and Concrete Research,2002,32(10):1559.
45 Sun G W, Sun W, Zhang Y S, et al. Influence of aggregates on chloride ion diffusion coefficient in cement-based composite materials[J].the Chinese Ceramic Society,2011,39(4):662(in Chinese).
孙国文,孙伟,张云升,等.骨料对氯离子在水泥基复合材料中扩散系数的影响[J].硅酸盐学报,2011,39(4):662.
46 Zheng J J, Zhou X Z. Prediction of the chloride diffusion coefficient of concrete[J].Materials and Structures,2007,40(7):693.
47 Caré S. Influence of aggregates on chloride diffusion coefficient into mortar[J].Cement and Concrete Research,2003,33(7):1021.
48 Sun G W, Zhang Y S, Sun W, et al. Multi-scale prediction of the effective chloride diffusion coefficient of concrete[J].Construction and Building Materials,2011,25(10):3820.
49 Tumidaiski P J. Electrical conductivity of portland cement mortars[J].Cement and Concrete Research,1996,26(4):529.
50 Delagrave A , Bigas J P, Ollivier J P, et al. Influence of the interfacial zone on the chloride diffusivity of mortars[J].Advanced Cement Based Materials,1997,5(3-4):86.
51 Lu B L, Torquato S. Nearest surface distribution functions for polydispersed particle systems[J].Physical Review A,1992,45(8):5530.
52 Chen H S, Sun W, Stroeven P. Quantitative solution of volume fraction of interface in cementitious composites[J].Acta Materiae Compositae Sinica,2006,23(2):133(in Chinese).
陈惠苏,孙伟,Stroeven P.水泥基复合材料界面过渡区体积分数的定量计算[J].复合材料学报,2006,23(2):133.
53 Sun G W, Sun W , Zhang Y S, et al. Quantitative analysis and affecting factors of the overlapping degree of interfacial transition zones between neighboring aggregates in concrete[J].Journal of Wuhan University of Technology (Materials Science Edition),2011,26(1):147.
54 Jiang L, Zheng J J. A method of computing the volume fraction of interfacial transition zone in concrete[J].Journal of Zhejiang University of Technology,2004,32(2):163(in Chinese).
姜璐,郑建军.混凝土界面体积百分比的计算方法[J].浙江工业大学学报,2004,32(2):163.
55 Bernard O, Ulm F J, Lemarchand E. A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials[J].Cement and Concrete Research,2003,33(9):1293.
56 Caré S, Hervé E. Application of a n-phase model to the diffusion coefficient of chloride in mortar[J].Transport in Porous Media,2004,56(2):119.
57 Oh B H, Jang S Y. Prediction of diffusivity of concrete based on simple analytic equations[J].Cement and Concrete Research,2001,34(3):463.
58 Sun G W, Sun W, Zhang Y S, et al. The relationship between chloride diffusivity and pore structure of hardened cement paste[J].Journal of Zhejiang University-Science A (Applied Physics & Enginee-ring),2011,12(5):360.
59 Maekawa K, Ishida T, Kishi T. Multi-scale modeling of concrete performance integrated material and structural mechanics[J].Advanced Concrete Technology,2003,1(2):91.
60 Bejaoui S, Bary B. Modeling of the link between microstructure and effective diffusivity of cement pastes using a simplified composite model[J].Cement and Concrete Research,2007,37(3):469.
61 Bary B, Béjaoui B. Assessment of diffusive and mechanical properties of hardened cement pastes using a multi-coated sphere assemblage model[J].Cement and Concrete Research,2006,36(2):245.
62 Hobbs D W. Aggregate influence on chloride ion diffusion into concrete[J].Cement and Concrete Research,1999,29(12):1995.
63 Hashin Z, Shtrikman S. A variational approach to the theory of the effective magnetic permeability of multiphase materials[J].Journal of Applied Physics,1962,33(10):3125.
64 Xi Y P, Bažant Z P. Modeling chloride penetration in saturated concrete[J].Materials in Civil Engineering,1999,11(1):58.
65 Christensen R M. A critical evaluation for a class of micromechanics models[J].Journal of the Mechanics & Physics of Solids,1990,38(3):379.
66 Garboczi E J, Bentz D P. Analytical formulas for interfacial transition zone properties[J].Advanced Cement Based Materials,1997,6(3-4):99.
67 Liu Z Y. Study of mechanism of microstructure evolution and transport behavior of cement-based composite materials[D].Naijing: Southeast University,2013(in Chinese).
刘志勇.水泥基复合材料微结构演变机理及其传输行为研究[D].南京:东南大学,2013.
[1] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[2] 王杏娟, 靳贺斌, 朱立光, 朴占龙, 王博, 曲硕. B2O3对CaO-Al2O3-SiO2基连铸保护渣性能及结构的影响[J]. 材料导报, 2019, 33(8): 1395-1400.
[3] 李海南, 马保国, 谭洪波, 梅军鹏. TiO2纳米颗粒对水泥-粉煤灰体系水化硬化及氯离子侵蚀的影响[J]. 材料导报, 2019, 33(4): 630-633.
[4] 陈枭, 白小波, 王洪涛, 纪岗昌. 超音速火焰喷涂多尺度WC-17Co粉末制备的金属陶瓷涂层的组织结构与性能[J]. 材料导报, 2019, 33(4): 684-688.
[5] 张则瑞, 吴建东, 杨敬斌, 周建和, 李东旭. 氧化石墨烯对水泥基自流平砂浆性能的影响[J]. 材料导报, 2019, 33(2): 240-245.
[6] 吴彰钰, 余红发, 麻海燕, 冯滔滔, 达波. 基于可靠度的海洋浪溅区大掺量矿渣混凝土结构服役寿命预测[J]. 材料导报, 2019, 33(2): 264-270.
[7] 弯艳玲, 张猛, 杨健, 于化东. 多尺度微结构对铝合金表面疏水性能的影响[J]. 材料导报, 2019, 33(16): 2715-2719.
[8] 盛鹰, 朱星亮, 曾祥国, 贾彬, 文军. 裂纹扩展和裂尖变形机理的多尺度耦合数值模拟方法[J]. 材料导报, 2019, 33(14): 2419-2425.
[9] 王中平, 杨浩宇, 赵亚婷, 徐玲琳. 不同养护温度下氯化钠对铝酸盐水泥水化的影响[J]. 材料导报, 2019, 33(14): 2343-2347.
[10] 薛宗伟, 李心慰, 栾旭, 罗旭东, 徐若梦, 吴锋. 纳米氧化锆对氧化镁陶瓷抗热震性的影响[J]. 材料导报, 2019, 33(10): 1630-1633.
[11] 冷建成, 李政达, 王玉洁, 周临风. 循环应力对磁记忆效应影响的试验研究[J]. 材料导报, 2019, 33(10): 1723-1727.
[12] 王爱国,吕邦成,刘开伟,马 雪,徐海燕,谭京梅. 珊瑚骨料混凝土性能及微结构的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1528-1533.
[13] 尹雪亮, 陈敏, 王楠, 徐磊, 彭可武. Y2O3添加对MA-CA2-CA6复合材料烧结行为的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1357-1361.
[14] 肖水清, 刘杰, 肖白军, 邓欣, 伍尚华. 实现Ti(C,N)基金属陶瓷强韧化的技术路径[J]. 《材料导报》期刊社, 2018, 32(7): 1129-1138.
[15] 宋昊, 谢友均, 龙广成. 水泥乳化沥青砂浆研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 836-846.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed