Please wait a minute...
材料导报  2018, Vol. 32 Issue (17): 2992-3009    https://doi.org/10.11896/j.issn.1005-023X.2018.17.013
  无机非金属及其复合材料 |
环氧沥青混凝土桥面铺装材料研究与应用进展
王朝辉1, 傅一1, 陈谦1, 陈宝2, 周骊巍3
1 长安大学公路学院,西安 710064;
2 河南官渡黄河大桥开发有限公司,郑州 451450;
3 天津市市政工程设计研究院,天津 300051
Application and Research Advances in Epoxy Asphalt Concrete Serving as Deck Pavement Material
WANG Chaohui1, FU Yi1, CHEN Qian1, CHEN Bao2, ZHOU Liwei3
1 School of Highway, Chang’an University, Xi’an 710064;
2 Henan Guandu Yellow River Bridge Development Co., Ltd., Zhengzhou 451450;
3 Tianjin Municipal Engineering Design & Research Institute, Tianjin 300051
下载:  全 文 ( PDF ) ( 1763KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着桥梁设计理念、结构分析、施工技术等不断更新发展与完善,目前桥梁正逐渐朝着大跨度、高强度、长寿命、高耐久等方向发展,同时,未来桥梁也将面临更复杂的建设环境、更多的功能需求,因此必须加强研发与新型桥梁设计体系相匹配的特种桥面铺装材料。环氧沥青混凝土桥面铺装材料以高强度、耐高温、抗疲劳、抗老化等优异路用性能脱颖而出,逐渐受到关注。
   然而,环氧沥青混凝土制备工艺复杂、施工条件严苛、耐久性不足等问题日益凸显,这些缺点使得其在桥面铺装领域的推广受到一定阻碍。为此,研究者们针对如何提升环氧沥青混凝土使用品质及耐久性进行了深入研究并取得了一定成果。这一系列成果先后在大量桥面铺装实体工程中得以应用,良好的使用效果也为环氧沥青混凝土的进一步推广奠定了基础。
   环氧沥青混凝土在桥面铺装领域的研究成果可以概括为三个方面:铺装结构组合优化、制备工艺优化、混凝土原材料优化。其中铺装结构组合从早期的单质单层结构逐渐过渡到单质双层、异质双层结构,趋于合理的铺装结构组合使环氧沥青混凝土材料的性能得以充分发挥。制备工艺从热拌法发展到温拌甚至冷拌,在保证环氧沥青混凝土使用性能的同时减少了对环境的污染,并且在一定程度上降低了施工难度。而在原材料应用方面,研究者们不断对双组分环氧沥青与三组分环氧沥青的性能进行对比分析;同时,环氧沥青的改性方式趋于多样化,从单独使用改性沥青发展到同步使用改性环氧树脂,改性剂从纤维发展到高分子聚合物、超支化聚合物等。这些措施不仅改善了沥青与环氧树脂的相容性,也增强了环氧沥青混凝土的相关性能。此外,为使环氧沥青混凝土具有更好的稳定性,在级配优化方面也进行了深入研究。然而目前环氧沥青混凝土的一系列研究成果较为散乱,缺乏对其系统的总结与梳理,且环氧沥青混凝土的性能评价指标及要求仍需深入研究与完善。
   为进一步确定环氧沥青混凝土桥面铺装材料科学合理的性能评价指标及要求,本文全面梳理了国内外环氧沥青混凝土相关规范,系统调查了大量实体工程及研究动态,对比分析了不同主要原材料的环氧沥青混凝土对其路用性能的影响,最终推荐了环氧沥青混凝土桥面铺装结构组合、原材料类型、级配范围和性能评价指标及要求,为环氧沥青混凝土桥面铺装材料规范完善与质量控制奠定了基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王朝辉
傅一
陈谦
陈宝
周骊巍
关键词:  环氧沥青混凝土  桥面铺装材料  性能评价    
Abstract: With the continuous development and improvement of design concept, structural analysis and construction techno-logy, bridges are evolving towards large span, high strength, long life and high endurance at present, and meanwhile, will confront more complicated construction circumstances and more functional requirements. Therefore, the research of specific bridge deck paving materials which match with new bridge design system is indispensable. Epoxy asphalt concrete has come to the fore and drawn wide concern due to its high strength, high-temperature resistance, fatigue resistance, aging resistance and other excellent road performance.
   However, the increasingly exaggerated issues of epoxy asphalt concrete, such as complex preparation process, harsh construction conditions and unsatisfactory durability, hinder the popularization of epoxy asphalt concrete in bridge deck application. To this end, researchers have made intensive works to improve the workability and durability of epoxy asphalt concrete, and have acquired certain achievements. These achievements have found remarkable application in practical projects, which lays a foundation for the further promotion of epoxy asphalt concrete.
   The variety of beneficial outcomes for the research of epoxy asphalt concrete serving as dech pavement material can be classified into three aspects: pavement structure optimization, preparation process optimization and raw materials optimization. The combinations of pavement structure have been developed from homogeneous single-layer structure to homogeneous double-layer structure and heterogeneous double-layer structure. The more reasonable combination of pavement structure facilitates to achieve full potential for the performance of epoxy asphalt concrete. As for preparation process, the prevailing of warm mixing and cold mixing over the traditional hot mixing alleviates pollution and fairly reduces construction difficulty, while ensures the serving performance of epoxy asphalt concrete. From the perspective of raw materials, the performance of two-component epoxy asphalt and three-component epoxy asphalt have attained deep comparative investigations. At the same time, modification methods for epoxy asphalt have gotten diversified, as the synergistic use of modified epoxy resin and modified asphalt gradually predominates, and polymer modifiers and hyperbranched polymer modifiers along with the initially adopted fibrous modifiers also have gain noticeable reformation. These advancements result in improved compatibility between asphalt and epoxy resin, and furthermore, impressive enhancement for the perfor-mance of epoxy asphalt concrete. Additionally, for the sake of making epoxy asphalt concrete more stable, the formula optimization has also captured much attention. However, this series of research results of epoxy asphalt concrete are scattered without systematically classifying and analyzing. Moreover, the performance evaluation indexes and requirements of epoxy asphalt concrete need to be further studied and improved.
   To define a reasonable system of performance evaluation indexes and requirements for epoxy asphalt concrete, this article comprehensively surveys the domestic and international specifications of epoxy asphalt concrete, systematically inspects vast amounts of practical projects and global research trends. It makes a comparative analysis over the effects of various major raw materials on pavement performance of epoxy asphalt concrete, and gives recommendation on bridge deck pavement structure combinations, raw materials, formulas, performance evaluation indexes and requirements. The paper is expected to lay a foundation for specification improvement and quality control of epoxy asphalt concrete.
Key words:  epoxy asphalt concrete    bridge pavement materials    performance evaluation
                    发布日期:  2018-09-19
ZTFLH:  U414  
  TB332  
基金资助: 中央高校基本科研业务费专项资金(300102218210);天津市交通运输科技发展计划项目(2017A-12);河南省交通运输科技计划项目(2018J8)
作者简介:  王朝辉:男,1980年生,教授,博士研究生导师,研究方向为道路材料 E-mail:wchh0205@163.com
引用本文:    
王朝辉, 傅一, 陈谦, 陈宝, 周骊巍. 环氧沥青混凝土桥面铺装材料研究与应用进展[J]. 材料导报, 2018, 32(17): 2992-3009.
WANG Chaohui, FU Yi, CHEN Qian, CHEN Bao, ZHOU Liwei. Application and Research Advances in Epoxy Asphalt Concrete Serving as Deck Pavement Material. Materials Reports, 2018, 32(17): 2992-3009.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.17.013  或          http://www.mater-rep.com/CN/Y2018/V32/I17/2992
1 Gaul R W. Epoxy asphalt concrete-a polymer concrete with 25 years’ experience[J].Special Publication,1996,166:233.
2 Chen L L, Qian Z D, Jiang C L. Research on strength developing procedure of epoxy asphalt mixture[C]//9th Asia Pacific Transportation Development Conference. Chongqing,2012:558.
3 Balala B. Studies leading to choice of epoxy asphalt for pavement on steel orthotropic bridge deck of San Mateo-Hayward Bridge[C]//Committee on Adhesives, Bonding Agents and Their Uses and pre-sented at the 48th Annual Meeting. California,1969:12.
4 Hicks R G, Dussek I J, Seim C. Asphalt surfaces on steel bridge decks[J].Transportation Research Record Journal of the Transportation Research Board,2000,1740:135.
5 Mayama M. エポキシアスファルト混合物の力学挙動[J].Journal of the Japan Petroleum Institute,1978,21:68.
6 Zhu C. Japan TAF epoxy asphalt concrete design and steel bridge deck pavement construction technology[J].Applied Mechanics & Materials,2013,330:905.
7 Zeng L W. Quality control of epoxy asphalt concrete construction in Zhanjiang Bay Bridge[J].Road Machinery & Construction Mechanization,2007,24(4):46(in Chinese).
曾利文.湛江海湾大桥钢桥面环氧沥青施工质量控制[J].筑路机械与施工机械化,2007,24(4):46.
8 Wang H. Application research on design and construction of deck pavement on steel bridge for the Grand Canal Bridge on Changzhou West Beltway[D].Xi’an: Chang’an University,2014(in Chinese).
王晖.常州西绕城高速公路京杭运河特大桥钢桥面环氧沥青铺装应用研究[D].西安:长安大学,2014.
9 Huang W, Qian Z, Chen G, et al. Epoxy asphalt concrete paving on the deck of long-span steel bridges[J].Science Bulletin,2003,48(21):2391.
10 Wang J W, Li Y U, Luo S. Service condition survey and analysis of epoxy asphalt concrete pavement on Nanjing Second Yangtze River Bridge after thirteen years life[J].Highway,2015(8):37(in Chinese).
王建伟,于力,罗桑.南京长江第二大桥环氧沥青混凝土铺装服役13年回顾[J].公路,2015(8):37.
11 Li H T, Huang W. Study on deck surfacing of trail bridge for Runyang Bridge[J].Journal of Highway and Transportation Research and Development,2005,22(4):76(in Chinese).
李洪涛,黄卫.润扬大桥钢桥面铺装实桥试验研究[J].公路交通科技,2005,22(4):76.
12 Zhang D J. Epoxy asphalt pavement on Nanjing Third Yangtze River Bridge[J].Highway,2007(9):21(in Chinese).
章登精.南京长江第三大桥环氧沥青桥面铺装工程[J].公路,2007(9):21.
13 Chen L L, Qian Z D, Wang J W, et al. Design and construction of epoxy asphalt concrete pavement for steel deck of Wuhan Tianxingzhou Changjiang River rail-cum-road bridge[J].Bridge Construction,2011,28(1):79(in Chinese).
陈磊磊,钱振东,王建伟,等.武汉天兴洲公铁两用长江大桥钢桥面环氧沥青混凝土铺装设计与施工[J].桥梁建设,2011,28(1):79.
14 Hao P W, Hu L, Chen Z Y, et al. Research and development of deck pavement in long-span steel box girder[J].Road Machinery & Construction Mechanization,2008,25(6):45(in Chinese).
郝培文,胡磊,陈志一,等.大跨径钢箱梁桥面铺装研究与发展[J].筑路机械与施工机械化,2008,25(6):45.
15 Jiang L. Applied research and development of epoxy asphalt[J].New Chemical Materials,2010,38(9):34(in Chinese).
蒋玲.环氧沥青混合料应用研究现状与发展趋势[J].化工新型材料,2010,38(9):34.
16 Jia X, Huang B, Chen S, et al. Comparative investigation into field performance of steel bridge deck asphalt overlay systems[J].KSCE Journal of Civil Engineering,2016,20(7):1.
17 Liu X W, Zhang X N. Application of Japanese TAF epoxy asphalt concrete in deck pavement[J].Road Machinery & Construction Mechanization,2010,27(1):69(in Chinese).
刘晓文,张肖宁.日本TAF环氧沥青混凝土在桥面铺装中的应用[J].筑路机械与施工机械化,2010,27(1):69.
18 重庆交通科研设计院.公路钢箱梁桥面铺装设计与施工技术指南[M].北京:人民交通出版社,2006.
19 住房和城乡建设部.城镇桥梁沥青混凝土铺装层施工技术规程(征求意见稿)[M].北京:中国建筑工业出版社,2017.
20 DB13/T 1789-2013.公路桥面环氧沥青混凝土铺装施工技术规程[S].北京:人民交通出版社,2013.
21 GB/T 30598-2014.道路与桥梁铺装用环氧沥青材料通用技术条件[S].北京:中国标准出版社,2014.
22 DB32/T 3292-2017.大跨径桥梁钢桥面环氧沥青铺装养护技术规程[S].北京:人民交通出版社,2017.
23 ASTM D1763-00(2013). Standard specification for epoxy resins[S]. West Conshohocken: American Society for Testing Materials,2013.
24 AASHTO M 200-73 (2007). Standard specification for epoxy protective coatings[S]. Washington: American Association of State Highway and Transportation Officials,2007.
25 多田宏行.橋面舗装の設計と施工[M].東京:鹿島出版会,1996:390.
26 Stastna J, Zanzotto L, Vacin O J. Viscosity function in polymer-modified asphalts[J].Joural of Colloid and Interface Science,2003,259(2):200.
27 Review S B. San Francisco Bay Bridge surfaced with epoxy asphalt[J].Shell Bitumen Review,1978,57:8.
28 Rebbechi J J. Epoxy asphalt surfacing of West Gate Bridge[C]//Australian Road Research Board (ARRB) Conference,10th.Sydney,1980.
29 Cong P, Tian Y, Liu N, et al. Investigation of epoxy-resin-modified asphalt binder[J].Journal of Applied Polymer Science,2016,133(21):43401.
30 Yu J B, Chang W P, Kim N. An evaluation of epoxy asphalt mixtures for long-span steel bridge deck[J].KSCE Journal of Civil Engineering,2012,32(6D):579.
31 Bocci E, Student P D, Canestrari F. Analysis of structural compatibility at interface between asphalt concrete pavements and orthotropic steel deck surfaces[J].Transportation Research Record Journal of the Transportation Research Board,2012,2293:1.
32 Huang W. Design of deck pavement for long-span steel bridges[J].China Civil Engineering Journal,2007,40(9):65(in Chinese).
黄卫.大跨径桥梁钢桥面铺装设计[J].土木工程学报,2007,40(9):65.
33 Wang W Q, He H Y. Study on performance of epoxy asphalt concrete applied in the deck pavement of Pingsheng Steel Bridge[J].Advanced Materials Research,2011,150-151:470.
34 Luo S, He H, Li K. Construction technology of epoxy asphalt concrete pavement on Wuhan Yangluo Bridge[J].Construction Techno-logy,2009,38(1):24(in Chinese).
罗桑,贺华,李科.武汉阳逻大桥环氧沥青混凝土铺装施工工艺[J].施工技术,2009,38(1):24.
35 Han Z Y, Jiang X K, Liu Y, et al. Techniques for paving domestic epoxy asphalt concrete of steel bridge deck of Fumin Bridge in Tianjin[J].Bridge Construction,2008(5):71(in Chinese).
韩振勇,蒋学奎,刘跃,等.天津富民桥钢桥面国产环氧沥青混凝土铺装技术[J].桥梁建设,2008(5):71.
36 Chen L Y, Zhu Z B, Pan L Q, et al. Construction technology and quality control of epoxy asphalt deck surfacing of Xihoumen Bridge[J].Bridge Construction,2009(S2):114(in Chinese).
陈露一,朱治宝,潘立泉,等.西堠门大桥环氧沥青桥面铺装施工工艺及质量控制[J].桥梁建设,2009(S2):114.
37 Wang H, Ren Y N. The study of the epoxy asphalt concrete pavement of Chong Qi Bridge to orthotropic steel bridge panel fatigue stress amplitude[J].Highway Engineering,2015(1):90(in Chinese).
王辉,任亚宁.崇启大桥环氧沥青混凝土铺装对钢桥面板疲劳应力幅的影响研究[J].公路工程,2015(1):90.
38 Song X, Hu X L, Zeng J. Applied on of epoxy asphalt concrete on steel deck pavement[J].Road Machinery & Construction Mechanization,2012,29(10):29(in Chinese).
宋鑫,胡小林,曾靖.环氧沥青混凝土在钢桥面铺装中的应用[J].筑路机械与施工机械化,2012,29(10):29.
39 Yu H X, Guo Y J, Li D, et al. Application of epoxy asphalt concrete in steel arch bridge deck pavement of Panjin Neihu Bridge[J].Construction Technology,2016,45(24):58(in Chinese).
余洪学,郭玉建,李东,等.环氧沥青混凝土在盘锦内湖大桥钢拱桥桥面铺装中的应用[J].施工技术,2016,45(24):58.
40 Yang R, Wang M. Design and construction of steel bridge pavement of Zhujiang Huangpu Bridge in Guangzhou[J].Road Machinery & Construction Mechanization,2009,26(8):59(in Chinese).
杨睿,王民.广州珠江黄埔大桥钢桥面铺装设计与施工[J].筑路机械与施工机械化,2009,26(8):59.
41 Yan Y, Guo D J, Feng J L, et al. Research status and prospect of epoxy asphalt for steel box girder bridge pavement[J].Journal of Highway & Transportation Research & Development,2016,33(9):69(in Chinese).
晏永,郭大进,封基良,等.钢桥铺装用环氧沥青的研究现状及展望[J].公路交通科技,2016,33(9):69.
42 Xu L. Study on gradation optimization design and compaction law of the epoxy asphalt for steel deck pavement[D].Guangzhou: South China University of Technology,2016(in Chinese).
许龙.环氧沥青钢桥面铺装级配优化设计与压实规律研究[D].广州:华南理工大学,2016.
[1] 王朝辉, 陈谦, 高志伟, 蒋婷婷, 陈姣. 浇注式沥青混凝土现状与发展*[J]. CLDB, 2017, 31(9): 135-145.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed