Please wait a minute...
材料导报  2019, Vol. 33 Issue (16): 2715-2719    https://doi.org/10.11896/cldb.18070134
  金属与金属基复合材料 |
多尺度微结构对铝合金表面疏水性能的影响
弯艳玲, 张猛, 杨健, 于化东
长春理工大学跨尺度微纳制造教育部重点实验室,长春 130022
Effect of Multi-scale Microstructures on the Hydrophobicity of Aluminum Alloy Surface
WAN Yanling, ZHANG Meng, YANG Jian, YU Huadong
Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022
下载:  全 文 ( PDF ) ( 2134KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用微铣削技术和电火花复合技术在铝合金表面加工微沟槽阵列结构。通过改变沟槽阵列凸台宽度,获得具有不同粗糙度因子的一级结构。采用不同脉宽参数对微沟槽阵列表面进行加工,获得具有不同粗糙度因子的二级结构。对具有不同粗糙度表面的疏水性能进行观测,并对其疏水机理进行分析。结果表明:在本征接触角为50°的铝合金表面,微铣削技术构建的单尺度微结构实现了铝合金表面从亲水向疏水的转变,微铣削-电火花复合加工的多尺度结构实现了铝合金表面的超疏水性能。在二级结构粗糙度恒定的基础上,随着一级沟槽凸起宽度的增大,铝合金表面的疏水性呈线性减小的趋势。当一级结构一定时,复合加工后的铝合金表面接触角随二级结构表面粗糙度的增加先增大后减小。水滴与一级结构的接触状态为Cassie与Wenzel之间的一种过渡状态,与二级微米级陨石坑结构的接触状态为Wenzel状态,与二级纳米级结构的接触状态为Cassie-Baxter状态。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
弯艳玲
张猛
杨健
于化东
关键词:  多尺度微结构  疏水表面  微铣削  电火花线切割    
Abstract: he micro-groove array was fabricated by micro-milling technology and WEDM. The width of convex platform was changed to obtain the first order structure with different rough factors. A secondary structure with different rough factors was obtained by processing micro-groove surface with different pulse width parameters. The surface hydrophobic properties of different rough factors were observed and the hydrophobic mechanism was analyzed. The results show that, on the surface of the aluminum alloy with an intrinsic contact angle of 50°, the single-scale microstructure constructed by micro-milling technology realizes the transition from hydrophilic to hydrophobic on the surface of the aluminum alloy, and the multi-scale structure of micro-milling-EDM processing achieves the superhydrophobic performance of the aluminum alloy surface. When the secondary structure is certain, the contact angle of the aluminum alloy surface machined by composite machining decreases linearly with the increase of the roughness factor of the first order structure. When the first order structure is certain, the contact angle of the aluminum alloy surface after the composite processing increases firstly and then decreases with the increase of the surface roughness. The contact state of primary structure is a transitional state between Cassie model and Wenzel model, the contact state of the micron crater is Wenzel state, and the contact state of the nano scale structure is Cassie-Baxter state.
Key words:  multi-scale microstructure    hydrophobic surface    micro-milling    WEDM
                    发布日期:  2019-07-12
ZTFLH:  O647  
基金资助: 国家科技创新合作重点项目(2016YFE0112100;644971);吉林省科技发展计划项目(20180101324JC);吉林省教育厅“十三五”科学技术项目(JJKH20190542KJ);长春理工大学机电工程学院露泉创新基金项目
作者简介:  弯艳玲,长春理工大学,副教授。2010年毕业于吉林大学仿生科学与工程专业。主要从事功能表面的仿生制备研究。
引用本文:    
弯艳玲, 张猛, 杨健, 于化东. 多尺度微结构对铝合金表面疏水性能的影响[J]. 材料导报, 2019, 33(16): 2715-2719.
WAN Yanling, ZHANG Meng, YANG Jian, YU Huadong. Effect of Multi-scale Microstructures on the Hydrophobicity of Aluminum Alloy Surface. Materials Reports, 2019, 33(16): 2715-2719.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070134  或          http://www.mater-rep.com/CN/Y2019/V33/I16/2715
[1] Zheng S L, Li C, Fu Q T, et al. Surface & Coatings Technology, 2015, 276, 341.
[2] Zhu D Y, Qiao W, Wang L D.Chinese Science Bulletin, 2010, 55(16),1595(in Chinese).
朱定一, 乔卫, 王连登.科学通报, 2010, 55(16),1595.
[3] Fang Y, Sun G, Bi Y H , et al.Science Bulletin, 2015(2),256(in Chinese).
房岩, 孙刚, 毕雨涵,等. Science Bulletin, 2015(2),256.
[4] Zheng Y M, Gao X F, Jia L. Soft Matter, 2007, 3(2), 178.
[5] Park E J, Yoon H S, Kim D H, et al. Applied Surface Science, 2014, 319, 367.
[6] Ma F L, Zeng Z X, Gao Y M, et al.China Surface Engineering, 2016, 29(1), 7(in Chinese).
马付良, 曾志翔, 高义民, 等. 中国表面工程, 2016, 29(1),7.
[7] Zhao L, Liu Q, Gao R, et al. Corrosion Science, 2014, 80(3), 177.
[8] Gao Y L, Dai K M, Huang L, et al. Materials Review A:Review Papers, 2017, 31(1), 103(in Chinese).
高英力, 代凯明, 黄亮, 等. 材料导报:综述篇, 2017, 31(1), 103.
[9] Khorsand S, Raeissi K, Ashrafizadeh F, et al. Applied Surface Science, 2016, 364, 349.
[10] Ji H Y, Fan Y M, Wu D G,et al.Materials Review B:Research Papers, 2017, 31(12), 101(in Chinese).
吉海燕, 范亚敏, 吴殿国, 等. 材料导报:研究篇, 2017, 31(12), 101.
[11] Liu Y, Yao W G, Yin X M, et al. Advanced Materials Interfaces,2016, 28(10),2062.
[12] Quan Y Y, Jiang P G, Zhang L Z.Fractals-Complex Geometry Patterns and Scaling in Nature and Society, 2014,22(3),1440002.
[13] Lou J. Fabrication technology of superhydrophobic metallic surface and analysis of wetting mechanism. Master's Thesis, Changchun University of Science and Technology, China, 2014(in Chinese).
娄俊. 超疏水金属表面的制备技术及润湿机理分析. 硕士学位论文, 长春理工大学,2014.
[14] Zhang X X. Fabrication of hydrophobic aluminum alloy surface based on high-speed micro milling and performances study. Master's Thesis, Changchun University of Science and Technology, China, 2016(in Chinese).
张欣欣. 高速微铣削制备铝合金疏水表面及其性能研究. 硕士学位论文, 长春理工大学, 2016.
[15] Patankar N A. Langmuir, 2004, 20(17), 7097.
[16] Rahmawan Y, Moon M W, Kim K S, et al. Langmuir, 2010, 26(1), 484.
[1] 钱志强,吴志坚,王世栋,张慧芳,刘海宁,叶秀深,李权. 镁合金超疏水表面的制备技术与应用研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 102-109.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed