Please wait a minute...
材料导报  2019, Vol. 33 Issue (14): 2419-2425    https://doi.org/10.11896/cldb.18050205
  金属与金属基复合材料 |
裂纹扩展和裂尖变形机理的多尺度耦合数值模拟方法
盛鹰1,2, 朱星亮3, 曾祥国4, 贾彬1,2, 文军1,2
1 工程材料与结构冲击振动四川省重点实验室, 绵阳 621000;
2 西南科技大学土木工程与建筑学院, 绵阳 621000;
3 西南交通大学数学学院, 成都 610031;
4 四川大学建筑与环境学院, 成都 610065
Multi-scale Coupled Numerical Simulation for Crack Propagation and Crack Tip Deformation Mechanism
SHENG Ying1,2, ZHU Xingliang3, ZENG Xiangguo4, JIA Bin1,2, WEN Jun1,2
1 Shock and Vibration of Engineering Materials and Structures Key Laboratory of Sichuan Province, Mianyang 621000;
2 School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621000;
3 School of Mathematics, Southwest Jiaotong University, Chengdu 610031;
4 College of Architecture and Environment, Sichuan University, Chengdu 610065
下载:  全 文 ( PDF ) ( 4466KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用提出的多尺度五区数值模型,实现了单边裂纹的平板α铁在宏观载荷作用下三个不同尺度(原子尺度、细观尺度、连续介质尺度)力学参量之间的耦合及传递,模拟了裂尖变形和裂纹扩展的多尺度演化过程。根据多尺度五区数值模型将平板建设为五个区域。其中:Ⅴ区为宏观尺度区,利用有限元方法对单边裂纹板进行动态数值分析,基于虚拟裂纹闭合法(VCCT)计算应力强度因子KI;Ⅳ区为包围裂尖的细观尺度有限元模型,Ⅳ区与Ⅴ区宏观尺度模型通过有限宽板应力强度因子表达式联系,从而获得Ⅳ区细观断裂模型的应力边界,并将其用于有限元加载,获得该区的位移场;Ⅰ区为嵌在Ⅳ区内的分子动力学模型区,通过该区的分子动力学计算可获得裂纹扩展和裂尖变形的机制,模拟裂纹分叉、堆垛层错、空位微观变形与失效机制等;Ⅱ区和Ⅲ区为分子动力学Ⅰ区与连续介质Ⅳ区之间的交互影响区,有限元结果通过Ⅲ区为分子动力学区提供载荷条件,分子动力学结果借助于Ⅱ区修正有限元的边界条件,实现了原子尺度离散区与连续介质区力学参量之间相互影响的动态耦合。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
盛鹰
朱星亮
曾祥国
贾彬
文军
关键词:  裂纹扩展  裂尖变形  多尺度数值模型  虚拟裂纹闭合法  分子动力学    
Abstract: A multi-scale numerical model with five regions was proposed to simulate the deformation around crack tip and the crack propagation in alpha iron, and it carried out the coupling transmission of mechanism parameters among atomistic/meso/continuum scales. Region Ⅴ was at macro scale, in which FEM was applied on the plate with a side crack to obtain the dynamic numerical analysis. The stress intensity factor KI was obtained through the virtual crack closure technique (VCCT). Region Ⅳ surrounding the crack tip was at macro scale, which was connected to the macro scale model of region Ⅴ through the formula for stress intensity factor of the finite-width strip. Then the stress boundary condition of the meso scale fracture model of region Ⅳ was obtained and applied to get the displacement field in the region. Region Ⅰ embedded in region Ⅳ was a MD (Molecular dynamics) model, where the crack extension and the crack deformation mechanism such as the crack branching, stacking faults, and vacancies, are obtained through the MD calculation. Region Ⅱ and region Ⅲ acted as the transaction regions between the MD region Ⅰ and the continuous region Ⅳ. The FEM results supplied the loading condition to the MD region through region Ⅲ, while the MD results could amend the FE boundary condition recur to region Ⅱ. The dynamic coupling of mechanical parameters in atomic scale discrete region and in the continuous region was implemented.
Key words:  crack propagation    crack tip deformation    multi-scale numerical model    virtual crack closure technique    molecular dynamics
                    发布日期:  2019-06-19
ZTFLH:  TG113.25  
基金资助: 中国空气动力研究与发展中心超高速碰撞研究中心开放基金(20183204);西南科技大学博士基金(17zx7149)
通讯作者:  zstarl@swjtu.edu.cn   
作者简介:  盛鹰,西南科技大学讲师,2017年获得四川大学固体力学专业博士学位。以第一作者或通讯作者在国内外学术期刊上发表论文10余篇,
获得国家发明专利或实用新型专利70余项。研究方向为工程材料变形与破坏的多尺度数值模拟、结构振动与冲击的实验与数值模拟。朱星亮,西南交通大学讲师,博士。研究方向为非线性动力学数值分析。
引用本文:    
盛鹰, 朱星亮, 曾祥国, 贾彬, 文军. 裂纹扩展和裂尖变形机理的多尺度耦合数值模拟方法[J]. 材料导报, 2019, 33(14): 2419-2425.
SHENG Ying, ZHU Xingliang, ZENG Xiangguo, JIA Bin, WEN Jun. Multi-scale Coupled Numerical Simulation for Crack Propagation and Crack Tip Deformation Mechanism. Materials Reports, 2019, 33(14): 2419-2425.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18050205  或          http://www.mater-rep.com/CN/Y2019/V33/I14/2419
1 Liu D, Mingard K , Lord O T,et al. Journal of Nuclear Materials, 2017, 493, 246.
2 Budarapu P R, Reinoso J, Paggi M. Computer Methods in Applied Mechanics & Engineering, 2017, 319, 338.
3 Espinosa-Duran J M, Sereda Y V, Abi-Mansour A, et al. Journal of Chemical Theory & Computation, 2018, 14(2),916.
4 Rapaport D C. The art of molecular dynamics simulation, Cambridge university press, Britain, 2004.
5 Doucet A . Sequential monte carlo methods, John Wiley & Sons, Inc.,USA, 2001.
6 Li M, Liu Y,Tang X S.Journal of Zhejiang University (Engineering Scie-nce), 2017, 51(3), 524(in Chinese).
李明, 刘扬, 唐雪松. 浙江大学学报(工学版), 2017, 51(3), 524.
7 Cao Y,Shi D L.Chinese Journal of Solid Mechanics,2017, 38(3), 263(in Chinese).
曹悦, 施冬莉.固体力学学报, 2017, 38(3), 263.
8 Madelung O. Philosophical Magazine A, 1996, 73(6), 1529.
9 Abraham F F, Broughton J Q, Bernstein N, et al. Europhysics Letters, 2007, 44(6), 783.
10 Fan J. Siam Journal on Multiscale Modeling & Simulation, 2009, 8(1), 228.
11 Shilkrot LE. Physics Review Letter, 2002, 89, 025501.
12 Wagner G J,Liu W K.Journal of Computational Physics, 2003, 190(1), 249.
13 Bai Y L, Wang H Y, Xia M F, et al. Advances in Mechanics, 2006, 58(6), 286.
14 Dong Q, Liu W K, Ruoff R S. Journal of Physical Chemistry B, 2001, 105(44), 10753.
15 Swope W C,Anderson H C.Physical review B, 1982, 41, 7042.
16 Fan J H. Multiscale analysis for deformation and failure of materials,Science Press,China, 2008(in Chinese).
范镜泓. 材料变形与破坏的多尺度分析, 科学出版社, 2008.
17 Leski A. Finite Elements in Analysis and Design, 2007, 43(3), 261.
[1] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[2] 刘朝, 邱舒怿, 黄红梅, 郭萍, 霍二光. 吸热型碳氢燃料正辛烷的热分解机理[J]. 材料导报, 2019, 33(8): 1251-1256.
[3] 王杏娟, 靳贺斌, 朱立光, 朴占龙, 王博, 曲硕. B2O3对CaO-Al2O3-SiO2基连铸保护渣性能及结构的影响[J]. 材料导报, 2019, 33(8): 1395-1400.
[4] 崔巍, 张煜杭, 张强, 冯子明. 考虑流体渗透压力的管道焊缝内裂纹扩展流固磁耦合方法[J]. 材料导报, 2019, 33(6): 1036-1041.
[5] 陈宇强, 宋文炜, 潘素平, 刘文辉, 宋宇锋, 张浩. 沉积颗粒对7N01-T6铝合金疲劳裂纹扩展行为的影响[J]. 材料导报, 2019, 33(10): 1697-1701.
[6] 马玉聪, 樊保民, 郝华, 吕金玉, 杨彪, 冯云皓. 肉桂醛超分子缓蚀剂对冷凝水中铁含量的净化机理[J]. 材料导报, 2018, 32(20): 3660-3666.
[7] 赵伦, 何晓聪, 张先炼, 丁燕芳, 刘洋, 邓聪. TA1钛合金自冲铆接头力学性能及微动行为[J]. 材料导报, 2018, 32(20): 3579-3583.
[8] 喻选,辛勇. 聚合物注塑成型充模阶段流动取向分子机理研究[J]. 《材料导报》期刊社, 2018, 32(2): 327-332.
[9] 豆艳坤,贺新福,贾丽霞,王东杰,吴石,杨文. Cu析出物对α-Fe辐照硬化贡献机理研究[J]. 《材料导报》期刊社, 2018, 32(2): 307-312.
[10] 丁军, 汪建, 黄霞, 王路生, 赵昊男, 宋鹍. 含孔洞缺陷的单晶α-Ti单轴拉伸下的微观变形机理及力学性能[J]. 材料导报, 2018, 32(18): 3171-3180.
[11] 王顺风, 马雪, 张祖华, 王爱国, 李亚林. 粉煤灰-偏高岭土基地质聚合物的孔结构及抗压强度[J]. 材料导报, 2018, 32(16): 2757-2762.
[12] 温飞娟, 董丽虹, 王海斗, 吕振林, 底月兰. 热喷涂零件界面裂纹扩展行为影响因素研究[J]. 材料导报, 2018, 32(16): 2793-2797.
[13] 葛茂忠, 项建云, 范真. 激光熔覆修复对TC4钛合金疲劳裂纹扩展速率的影响[J]. 材料导报, 2018, 32(16): 2803-2808.
[14] 崔巍, 王珂, 姜民政, 马春阳, 冯子明, 冷建成. 管道焊缝裂纹扩展的流固磁耦合表征[J]. 材料导报, 2018, 32(16): 2852-2858.
[15] 李革, 徐泽华, 牛建刚. 塑钢纤维轻骨料混凝土细观破坏过程的数值模拟[J]. 《材料导报》期刊社, 2018, 32(14): 2412-2417.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed