Please wait a minute...
材料导报  2018, Vol. 32 Issue (18): 3171-3180    https://doi.org/10.11896/j.issn.1005-023X.2018.18.013
  金属与金属基复合材料 |
含孔洞缺陷的单晶α-Ti单轴拉伸下的微观变形机理及力学性能
丁军, 汪建, 黄霞, 王路生, 赵昊男, 宋鹍
重庆理工大学机械工程学院,重庆 400054
Micro Deformation Mechanism for the Void Defects Embedded in a Single Crystal α-Ti in Tension and Its Effect on Mechanical Properties
DING Jun, WANG Jian, HUANG Xia, WANG Lusheng, ZHAO Haonan, SONG Kun
College of Mechanical Engineering, Chongqing University of Technology, Chongqing 400054
下载:  全 文 ( PDF ) ( 12805KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用分子动力学方法模拟了含球形孔洞的单晶α-Ti在单轴拉伸载荷作用下孔洞的生长过程和微观力学特性。研究表明,低应变率作用下,材料应力-应变曲线出现四个不同响应阶段:初始线性阶段、急剧下降阶段、快速增长阶段、快速下降至平稳阶段。由模拟结果原子构型图观察得知,对于孔洞赤道附近的锥面〈a〉型滑移系{1101}〈1120〉和{1011}孪生是孔洞生长的主要形式。通过研究模型尺寸、应变率、孔洞体积分数对单晶α-Ti材料力学性能的影响,结果表明:该材料的初始屈服应力随着模型尺寸、孔洞体积分数的增加而减小,随着应变率的增加而增大;杨氏模量只与孔洞体积分数有关,并随着孔洞体积分数的增大而减小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁军
汪建
黄霞
王路生
赵昊男
宋鹍
关键词:  分子动力学  孔洞生长  孪生变形  堆垛层错  α-Ti    
Abstract: The void growth process and microscopic mechanical properties of a single crystal α-Ti cube containing a spherical void in uniaxial tension loading were investigated by molecular dynamics simulation. The results showed that the stress-strain curves of the material appeared four different stages at the low strain rate: the initial linear stage, the sharp drop stage, the rapid increase stage and the rapid drop to the steady stage. Microstructure observation from MD results also indicated that the pyramidal〈a〉slip system{1101}〈1120〉 and {1011}twinning near the equator area of the void was the main form of void growth. The effects of specimen size, strain rate, void volume fraction on mechanical properties of single crystal α-Ti materials were studied, the result showed that the initial yield stress of the materials decreased with the increase both in specimen size and void volume fraction, but increased with the increase in strain rate; the Young’s modulus of the material depended only on the void volume fraction which decreased with the increase of the void volume fraction.
Key words:  molecular dynamics    void growth    twinning deformation    stacking faults    α-Ti
                    发布日期:  2018-10-18
ZTFLH:  TG146.1  
基金资助: 国家自然科学基金委员会与中国工程物理研究院联合基金(U1530140);重庆市基础与前沿研究计划项目(CSTC2016JCYJA0517;CSTC2017JCYJAX0357);重庆市教育委员会科学技术研究项目(KJ1709224)
作者简介:  丁军:男,1978年生,博士,教授,研究方向为先进材料的力学性能、跨尺度数值模拟等 E-mail:dingjunawen@126.com 汪建:男,硕士研究生,研究方向为跨尺度数值模拟 E-mail:951244911@qq.com
引用本文:    
丁军, 汪建, 黄霞, 王路生, 赵昊男, 宋鹍. 含孔洞缺陷的单晶α-Ti单轴拉伸下的微观变形机理及力学性能[J]. 材料导报, 2018, 32(18): 3171-3180.
DING Jun, WANG Jian, HUANG Xia, WANG Lusheng, ZHAO Haonan, SONG Kun. Micro Deformation Mechanism for the Void Defects Embedded in a Single Crystal α-Ti in Tension and Its Effect on Mechanical Properties. Materials Reports, 2018, 32(18): 3171-3180.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.18.013  或          http://www.mater-rep.com/CN/Y2018/V32/I18/3171
1 Pornsin-Sirirak T N, Tai Y C, Nassef H, et al. Titanium-alloy MEMS wing technology for a micro aerial vehicle application[J]. Sensors and Actuators A:Physical,2001,89(1-2):95.
2 Zhu K Y, Vassel A, Brisset F, et al. Nanostructure formation mechanism of α-titanium using SMAT[J]. Acta Materialia,2004,52(14):4101.
3 Zhao X C, Fu W J, Yang X R, et al. Microstructure and properties of pure titanium processed by equal-channel angular pressing at room temperature[J]. Scripta Materialia,2008,59(5):542.
4 Yu Q, Sun J, Morris J W, et al. Source mechanism of non-basal 〈c+a〉 slip in Ti alloy[J]. Scripta Materialia,2013,69(1):57.
5 Yu Q, Li S, Minor A M, et al. High-strength titanium alloy nanopillars with stacking faults and enhanced plastic flow[J]. Applied Physics Letters,2012,100(6):063109.
6 Nguyen L D, Warner D H. Improbability of void growth in aluminum via dislocation nucleation under typical laboratory conditions[J]. Physical Review Letters,2012,108(3):035501.
7 Shackelford J F. Introduction to materials science for engineers [M].6th ed.New Jersey:Prentice Hall,2004.
8 Chang W J, Fang T H. Influence of temperature on tensile and fatigue behavior of nanoscale copper using molecular dynamics simulation[J]. Journal of Physics and Chemistry of Solids,2003,64(8):1279.
9 Tang F L, Cai H M, Bao H W, et al. Molecular dynamics simulations of void growth in γ-TiAl single crystal[J]. Computational Materials Science,2014,84:232.
10 Ren J Q, Sun Q Y, Xiao L, et al. Phase transformation behavior in titanium single-crystal nanopillars under [0001] orientation tension: A molecular dynamics simulation[J]. Computational Materials Science,2014,92:8.
11 Ren J Q, SunQ Y, Xiao L, et al. Size-dependent of compression yield strength and deformation mechanism in titanium single-crystal nanopillars orientated [0001] and [1120][J]. Materials Science & Engineering A,2014,615:22.
12 Chang L, Zhou C Y, Wen L L, et al. Molecular dynamics study of strain rate effects on tensile behavior of single crystal titanium nanowire[J]. Computational Materials Science,2017,128:348.
13 Chang L, Zhou C Y, Liu H X, et al. Orientation and strain rate dependent tensile behavior of single crystal titanium nanowires by molecular dynamics simulations[J]. Journal of Materials Science & Technology, DOI: http:∥dx.doi.org/doi:10.1016/j.jmst.2017.03.011.
14 An M R, Deng Q, Li Y L, et al. Molecular dynamics study of tension-compression asymmetry of nanocrystal α-Ti with stacking fault[J]. Materials & Design,2017,127:204.
15 Yuan Y Q, Zeng X G, Hu Y F. Atomistic simulation of failure mechanism for α-Ti with central crack under uniaxial tensile and fatigue loading[J]. Journal of Anhui University(Natural Science Edition),2016,40(3):50(in Chinese).
袁玉全,曾祥国,胡燕飞.拉伸与疲劳载荷下α-Ti中裂纹扩展机制的原子模拟[J].安徽大学学报(自然科学版),2016,40(3):50.
16 Lan Y T, Lu D M, Liu G L. Numerical simulation of plastic beha-vior and meso inhomogeneous deformation in AZ31 Mg alloy[J]. The Chinese Journal of Nonferrous Metals,2012,24(10):2985(in Chinese).
蓝永庭,陆大敏,刘贵龙.AZ31镁合金晶体塑性行为与细观非均匀变形的数值模拟[J].中国有色金属学报,2012,24(10):2985.
17 Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics,1995,117(1):1.
18 Ackland G J. Theoretical study of titanium surfaces and defects with a new many-body potential[J]. Philosophical Magazine A,1992,66(6):917.
19 Simmons G, Wang H. Single crystal elastic constants and calculated aggregate properties [M]. Cambridge: MIT Press,1971.
20 Xiong K, Zhang Y Y, Gu J F. Deformation twinning in hexagonal close-packed single crystals under uniaxial compression[J]. Mate-rials Science Forum,2016,850:379.
21 Honeycutt J D, Andersen H C. Molecular dynamics study of melting and freezing of small lennard-jones clusters[J]. The Journal of Phy-sical Chemistry,1987,91(19):4950.
22 Stukowski A. Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool[J]. Modelling & Simulation in Materials Science & Engineering,2010,18(1):015012.
23 Zhao K J, Chen C Q, Shen Y P, et al. Molecular dynamics study on the nano-void growth in face-centered cubic single crystal copper[J]. Computational Materials Science,2009,46(3):749.
24 Horstemeyer M F, Baskes M I, Plimpton S J, et al. Length scale and time scale effects on the plastic flow of fcc metals[J]. Acta Materialia,2001,49(20):4363.
25 Tang T, Kim S, Horstemeyer M F, et al. Molecular dynamics simulations of void growth and coalescence in single crystal magnesium[J]. Acta Materialia,2010,58(14):4742.
26 Xu S Z, Hao Z M, Su Y Q, et al. An analysis on nanovoid growth in body-centered cubic single crystalline vanadium[J]. Computational Materials Science,2011,50(8):2411.
27 Zhao K J, Fan L L, Chen C Q, et al. Multiaxial behavior of nanoporous single crystal copper: A molecular dynamics study[J].Acta Mechanica Solida Sinica,2009,22(6):650.
28 O’regan T L, Quinn D F, Howe MA, et al. Void growth simulations in single crystals[J]. Computational Mechanics,1997,20:115.
[1] 王杏娟, 靳贺斌, 朱立光, 朴占龙, 王博, 曲硕. B2O3对CaO-Al2O3-SiO2基连铸保护渣性能及结构的影响[J]. 材料导报, 2019, 33(8): 1395-1400.
[2] 刘朝, 邱舒怿, 黄红梅, 郭萍, 霍二光. 吸热型碳氢燃料正辛烷的热分解机理[J]. 材料导报, 2019, 33(8): 1251-1256.
[3] 盛鹰, 朱星亮, 曾祥国, 贾彬, 文军. 裂纹扩展和裂尖变形机理的多尺度耦合数值模拟方法[J]. 材料导报, 2019, 33(14): 2419-2425.
[4] 马玉聪, 樊保民, 郝华, 吕金玉, 杨彪, 冯云皓. 肉桂醛超分子缓蚀剂对冷凝水中铁含量的净化机理[J]. 材料导报, 2018, 32(20): 3660-3666.
[5] 喻选,辛勇. 聚合物注塑成型充模阶段流动取向分子机理研究[J]. 《材料导报》期刊社, 2018, 32(2): 327-332.
[6] 豆艳坤,贺新福,贾丽霞,王东杰,吴石,杨文. Cu析出物对α-Fe辐照硬化贡献机理研究[J]. 《材料导报》期刊社, 2018, 32(2): 307-312.
[7] 方 炜,王 磊. 碳纳米豆荚内C60分子的振荡行为[J]. 《材料导报》期刊社, 2018, 32(10): 1737-1742.
[8] 丁军, 刘泊, 王路生, 黄霞, 宋鹍. 微观尺度下单晶铜熔点多因素影响的分子动力学模拟研究[J]. 《材料导报》期刊社, 2017, 31(6): 147-152.
[9] 林伟辉, 付甲, 王志华, 辛浩. 不同钙硅比水化硅酸钙力学性能的分子动力学模拟*[J]. 《材料导报》期刊社, 2017, 31(20): 158-163.
[10] 杨明君, 邓彬彬, 马占. 聚酰亚胺玻璃化转变的动力学模拟*[J]. 《材料导报》期刊社, 2017, 31(12): 136-139.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed