Please wait a minute...
材料导报  2018, Vol. 32 Issue (20): 3579-3583    https://doi.org/10.11896/j.issn.1005-023X.2018.20.015
  金属与金属基复合材料 |
TA1钛合金自冲铆接头力学性能及微动行为
赵伦1,2, 何晓聪1, 张先炼1, 丁燕芳1, 刘洋1, 邓聪1
1 昆明理工大学机电工程学院,昆明 650500;
2 Department of Mechanical Engineering, Blekinge Tekniska Högskola, Karlskrona 37179;
Mechanical Performance and Fretting Behavior of Self-piercing Riveted Joint of TA1 Titanium Alloy
ZHAO Lun1,2, HE Xiaocong1, ZHANG Xianlian1, DING Yanfang1, LIU Yang1, DENG Cong1
1 Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500;
2 Department of Mechanical Engineering, Blekinge Tekniska Högskola, Karlskrona 37179;
下载:  全 文 ( PDF ) ( 4276KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作以TA1自冲铆接头为研究对象,基于拉伸-剪切和疲劳试验分析了接头的力学性能,并采用扫描电镜从微观层面研究了接头的拉伸-剪切失效机理、疲劳失效机理及微动行为。结果表明:拉伸-剪切失效模式为铆钉腿部从下板拉脱,铆钉颈部存在不同程度的断裂。疲劳失效模式主要为上板断裂失效,其疲劳极限约为1.18 kN。疲劳裂纹从上板与铆钉头接触部位萌生,在持续微动磨损及疲劳循环应力作用下,沿板厚和板宽方向不断扩展,直至接头疲劳断裂。微动磨损的剧烈程度直接影响接头疲劳失效模式。上板与铆钉头接触区的微动磨损源于板宽W区域,随着微动过程的不断进行,逐步向板长L区域扩展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵伦
何晓聪
张先炼
丁燕芳
刘洋
邓聪
关键词:  钛合金  自冲铆接头  裂纹萌生  裂纹扩展  微动行为  力学性能    
Abstract: The present work mainly focused on the self-piercing riveted (SPR) joint of TA1 titanium alloy. The tensile-shear test and fatigue test were conducted to analyze the mechanical performance of the joints, and the tensile-shear failure mechanism, fatigue failure mechanism and fretting behavior of the joints were investigated at a microscopic level by scanning electron microscope. The results exhibited that the tensile-shear failure mode assumed rivet shank pull-out from the bottom sheet and some degree of fracture located at the rivet neck, while the main fatigue failure mode was fracture of the upper sheet whose fatigue limit was approximately 1.18 kN. Fatigue cracks initiated at pierced sheet surface’s contact site with rivet head, and were propagated along the sheet thickness direction and sheet width direction under continuous fretting wear and fatigue cyclic stress, and finally resulted in joint break. The severity of fretting wear could influence fatigue failure mode of the joints. Fretting wear of the upper sheet initiated from W direction of sheet width, and spread gradually to L direction of sheet length with fretting wear process.
Key words:  titanium alloy    self-piercing riveted joint    crack initiation    crack propagation    fretting behavior    mechanical performance
               出版日期:  2018-10-25      发布日期:  2018-11-22
ZTFLH:  TH131.1  
基金资助: 国家留学基金委(201500090194);国家自然科学基金(51565023)
作者简介:  赵伦:男,1988年生,博士研究生,主要研究方向为薄板材料连接新技术 E-mail:lun_zhaokmust@163.com 何晓聪:通信作者,男,1955年生,博士,教授,博士研究生导师,从事薄板材料连接新技术研究 E-mail:xiaocong_he@126.com
引用本文:    
赵伦, 何晓聪, 张先炼, 丁燕芳, 刘洋, 邓聪. TA1钛合金自冲铆接头力学性能及微动行为[J]. 材料导报, 2018, 32(20): 3579-3583.
ZHAO Lun, HE Xiaocong, ZHANG Xianlian, DING Yanfang, LIU Yang, DENG Cong. Mechanical Performance and Fretting Behavior of Self-piercing Riveted Joint of TA1 Titanium Alloy. Materials Reports, 2018, 32(20): 3579-3583.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.20.015  或          http://www.mater-rep.com/CN/Y2018/V32/I20/3579
1 Zhang X, He X, Xing B, et al. Influence of heat treatment on fatigue performances for self-piercing riveting similar and dissimilar titanium, aluminium and copper alloys [J]. Materials & Design,2016,97:108.
2 Chung C, Kim H. Fatigue strength of self-piercing riveted joint in lap-shear specimens of aluminium and steel sheets [J]. Fatigue and Fracture of Engineering Materials and Structures,2016,39:1105.
3 Zhang X, He X, Cheng Q, et al. Investigation on the static strength of self-piercing riveted joints in dissimilar sheets about 1420 aluminum-lithium alloy [J]. Materials Review B: Research Papers,2015,29(12):76(in Chinese).
张先炼,何晓聪,程强,等.1420铝锂合金自冲铆异质组合接头静力学性能研究[J].材料导报:研究篇,2015,29(12):76.
4 Kang S, Kim H. Fatigue strength evaluation of self-piercing riveted Al-5052 joints under different specimen configurations [J]. International Journal of Fatigue,2015,80:58.
5 Huang L, Shi Y, Guo H, et al. Fatigue behavior and life prediction of self-piercing riveted joint [J]. International Journal of Fatigue,2016,88:96.
6 Gay A, Fabien L, Sebastien B, et al. Fatigue performance of a self-piercing rivet joint between aluminium and glass fiber reinforced thermoplastic composite [J]. International Journal of Fatigue,2016,83:127.
7 Zhao L, He X, Xing B, et al. Influence of sheet thickness on the fatigue behavior and fretting of self-piercing riveted joints in aluminum alloy 5052 [J]. Materials & Design,2015,87:1010.
8 Han L, Chrysanthou A, Young K, et al. Characterization of fretting fatigue in self-piercing riveted aluminium alloy sheets [J]. Fatigue and Fracture of Engineering Materials and Structures,2006,29:646.
9 Chen Y, Han L, Chrysanthou A, et al. Fretting wear in self-pier-cing riveted aluminium alloy sheet[J]. Wear,2003,255(7-12):1463.
10 Han L, Chrysanthou A, O’Sullivan J, et al. Fretting behaviour of self-piercing riveted aluminium alloy joints under different interfiacial conditions [J]. Materials & Design,2006,27(3):200.
11 He X, Wang Y, Lu Y, et al. Self-piercing riveting of similar and dissimilar titanium sheet materials [J]. The International Journal of Advanced Manufacturing Technology,2015,80(9):2105.
12 Xing B, He X, Zeng K, et al. Mechanical properties of self-piercing riveted joints in aluminium alloy 5052 [J]. The International Journal of Advanced Manufacturing Technology,2014,75(1):351.
13 He X, Zhao L, Deng C, et al. Self-piercing riveting of similar and dissimilar metal sheets of aluminium alloy and copper alloy [J]. Materials & Design,2015,65:923.
14 Dahlberg T, Ekberg A. Failure fracture fatigue: An introduction [M]. Lund: Studentlitteratur AB,2002.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[3] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[4] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[5] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[6] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[7] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[8] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[9] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[10] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[11] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[12] 阴中炜, 孙彦波, 张绪虎, 王亮, 徐桂华. 粉末钛合金热等静压近净成形技术及发展现状[J]. 材料导报, 2019, 33(7): 1099-1108.
[13] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[14] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[15] 杜娟, 刘青茂, 王付胜, 宋肖肖, 胡雪兰. Ti-6Al-4V钛合金在氢氟酸-硝酸体系下的缓蚀行为及机理[J]. 材料导报, 2019, 33(6): 1000-1005.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed