Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 307-312    https://doi.org/10.11896/j.issn.1005-023X.2018.02.029
  物理   计算模拟 |材料 |
Cu析出物对α-Fe辐照硬化贡献机理研究
豆艳坤,贺新福,贾丽霞,王东杰,吴石,杨文
中国原子能科学研究院反应堆工程技术研究部,北京 102413
The Contribution of Cu Precipitates to Hardening in α-Fe Matrix
Yankun DOU,Xinfu HE,Lixia JIA,Dongjie WANG,Shi WU,Wen YANG
Reactor Engineering Technology Research Division, China Institute of Atomic Energy, Beijing 102413
下载:  全 文 ( PDF ) ( 2710KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

采用分子动力学方法对α-Fe基中不同尺寸(直径0.5—2.5 nm)共格Cu析出物和刃型位错 1 2 (111){110}的相互作用进行了研究,并深入探讨了不同温度(100—600 K)和不同作用位置对析出物和位错相互作用的影响规律。结果表明,随着析出物尺寸的增加,位错受到的阻碍作用随之增大。该现象源于析出物尺寸增加导致位错通过时切割面积增大。同时温度的升高,降低了析出物对位错的阻碍作用,经对比发现1.0 nm、1.5 nm和2.0 nm Cu析出物的临界剪切应力从100 K升温至600 K时平均降低了0.049 Gb/L,而在100 K、200 K、300 K、450 K和600 K环境下Cu析出物尺寸从1.0 nm增至2.0 nm时,临界剪切应力平均升高0.096 Gb/L,说明析出物尺寸对位错运动阻碍作用的影响大于温度。位错在不同位置通过析出物时,发现从析出物中心通过时受到的阻碍作用最大,且当位错滑移面离析出物中心相等垂直距离时,位错从析出物上半部分通过时受到的阻碍作用均大于下半部分。这可能是由于位错滑移面下方的拉应力场和Cu析出物的压应力场相互作用贡献较大,导致位错运动受到了较大的阻碍作用。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
豆艳坤
贺新福
贾丽霞
王东杰
吴石
杨文
关键词:  α-Fe  刃型位错  Cu析出物  分子动力学    
Abstract: 

The interactions between coherent Cu precipitates with different sizes (0.5—2.5 nm) and a 1 2 (111){110} edge dislocation in α-Fe matrix have been investigated by molecular dynamics method (MD). Moreover, the impacts of temperatures (100—600 K) and different interaction positions for the interaction of precipitates and dislocations have been further explored. It is found that the increase of precipitates size enhances obstacle strength for dislocation glide. The reason is that the increase of precipitates diameter will increase the intercept area when dislocations pass through precipitates of different sizes. However, the rise of temperature causes the reducing of obstacle strength. By comparison, increasing precipitates diameters from 1.0 nm to 2.0 nm, critical shear stress of systems under different temperature rise by an average of 0.096 Gb/L. And when the temperature is increased from 100 K to 600 K, the critical shear stress of systems containing Cu precipitates with diameters of 1—2 nm reduces by an average of 0.049 Gb/L. The results qualitatively indicate that the effect of precipitates size plays a more important role in obstacle strength of precipitates for dislocation glide than temperature. When dislocation passes through precipitates at different sites, the precipitate whose center plane is on the dislocation glide plane is found to be the strongest obstacle. When the glide plane is the same vertically far away from the center plane of precipitates, the precipitates whose center planes are below the glide planes are stronger obstacles than those above the glide planes. The bigger contribution from the interaction between the tensile stress field below the dislocation glide plane and compressive stress field of Cu precipitate resultes in stronger hindrance for the dislocation movement.

Key words:  α-Fe;    edge dislocations    Cu precipitates    molecular dynamics method
               出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  TL341  
基金资助: 国家高技术研究发展计划(2015AA01A303)
引用本文:    
豆艳坤,贺新福,贾丽霞,王东杰,吴石,杨文. Cu析出物对α-Fe辐照硬化贡献机理研究[J]. 《材料导报》期刊社, 2018, 32(2): 307-312.
Yankun DOU,Xinfu HE,Lixia JIA,Dongjie WANG,Shi WU,Wen YANG. The Contribution of Cu Precipitates to Hardening in α-Fe Matrix. Materials Reports, 2018, 32(2): 307-312.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.029  或          http://www.mater-rep.com/CN/Y2018/V32/I2/307
图1  刃型位错和Cu析出物相互作用的模型图:(a)MD模拟晶胞示意图;(b)位错在不同位置通过析出物的模型图
图2  α-Fe中600 K温度下刃型位错和不同尺寸Cu析出物相互作用的剪切应力与应变的关系(插图为对应的临界剪切应力值)
图3  α-Fe中600 K温度下刃型位错和Cu析出物的相互作用示意图:(a)位错和1.5 nm Cu析出物的相互作用;(b)位错脱离不同尺寸Cu析出物的钉扎作用
图4  位错和1.0 nm、1.5 nm、2.0 nm Cu析出物相互作用的临界剪切应力变化: (a)临界剪切应力和温度的关系;(b)临界剪切应力和温度、尺寸的关系
图5  α-Fe中在600 K温度下Cu析出物和位错相互作用后的析出物形貌以及不同作用位置的剪切应力变化:(a)1.5 nm Cu析出物和位错相互作用后的析出物形貌图;(b—d)分别为1.0 nm、1.5 nm和2.0 nm Cu 析出物在不同位置和位错相互作用的剪切应力和应变关系;(e)对应的临界剪切应力变化趋势
1 Debarberis L, Sevini F, Acosta B , et al. Irradiation embrittlement of model alloys and commercial steels: Analysis of similitude beha-viors[J]. International Journal of Pressure Vessels and Piping, 2002,79(8):637.
2 Kryukov A, Debarberis L, Von Estorff U , et al. Irradiation embrittlement of reactor pressure vessel steel at very high neutron fluence[J]. Journal of Nuclear Materials, 2012,422(1):173.
3 Ahlstrand R, Bièth M, Rieg C . Neutron embrittlement of VVER reactor pressure vessels-recent results, open issues and new developments[J]. Nuclear Engineering and Design, 2004,230(1):267.
4 Gurovich B, Kuleshova E, Zabusov O , et al. Influence of structural parameters on the tendency of VVER-1000 reactor pressure vessel steel to temper embrittlement[J]. Journal of Nuclear Materials, 2013,435(1):25.
5 Jia L X, He X F, Yang W . Atomistic simulation study on mechanism of solute precipitation in RPV after thermal ageing[J]. Atomic Energy Science and Tchnology, 2014,48(sl), 535(in Chinese).
6 贾丽霞, 贺新福, 杨文 . 热老化下RPV模型钢中溶质析出机理的原子尺度模拟研究[J], 原子能科学技术, 2014,48(增刊), 535.
7 Kryukov A, Debarberis L, Von Estorff U , et al. Irradiation embrittlement of reactor pressure vessel steel at very high neutron fluence[J]. Journal of Nuclear Materials, 2012,422(1):173.
8 Cheng G D, Cao X Z, Wu J P , et al. Advances in investigating micro-defects in Fe-Cu alloys using positron annihilation techniques[J]. Materials Review A: Review Papers, 2013,27(2):133(in Chinese).
9 成国栋, 曹兴忠, 吴建平 , 等. 应用正电子湮没谱学技术研究Fe-Cu合金微观缺陷的进展[J]. 材料导报:综述篇, 2013,27(2):133.
10 Eldrup M, Singh B N . Study of defect annealing behavior in neutron irradiated Cu and Fe using positron annihilation and electrical conductivity[J]. Journal of nuclear materials, 2000,276(1):269.
11 Hyde J M, English C A . An analysis of the structure of irradiation induced Cu-enriched clusters in low and high nickel welds[J]. MRS Online Proceedings Library Archive, 2000,650.
12 Miller M K, Brenner S S . FIM/atom probe study of irradiated pressure vessel steels[J]. Res Mechanica, 1984,10(3):161.
13 Pareige P, Auger P, Miloudi S, et al. Microstructural evolution of the CHOOZ A PWR surveillance program material: Small angle neutron scattering and tomographic atom probe studies [C]//Annales De Physique.Paris, 1997.
14 Edmondson P D, Miller M K, Powers K A , et al. Atom probe tomography characterization of neutron irradiated surveillance samples from the RE Ginna reactor pressure vessel[J]. Journal of Nuclear Materials, 2016,470:147.
15 Bergner F, Gillemot F, Hernández-Mayoral M , et al. Contributions of Cu-rich clusters, dislocation loops and nanovoids to the irradiation-induced hardening of Cu-bearing low-Ni reactor pressure vessel steels[J]. Journal of Nuclear Materials, 2015,461:37.
16 Chaouadi R, Gérard R . Copper precipitate hardening of irradiated RPV materials and implications on the superposition law and re-irradiation kinetics[J]. Journal of Nuclear Materials, 2005,345(1):65.
17 Kotrechko S, Dubinko V, Stetsenko N , et al. Temperature dependence of irradiation hardening due to dislocation loops and precipitates in RPV steels and model alloys[J]. Journal of Nuclear Materials, 2015,464:6.
18 Takeuchi T, Kuramoto A, Kameda J , et al. Effects of chemical composition and dose on microstructure evolution and hardening of neutron-irradiated reactor pressure vessel steels[J]. Journal of Nuclear Materials, 2010,402(2):93.
19 Miller M K, Sokolov M A, Nanstad R K , et al. APT characterization of high nickel RPV steels[J]. Journal of Nuclear Materials, 2006,351(1):187.
20 Harry T, Bacon D J . Computer simulation of the core structure of the <111> screw dislocation in α-iron containing copper precipitates: I. structure in the matrix and a precipitate[J]. Acta Materialia, 2002,50(1):195.
21 Nedelcu S, Kizler P, Schmauder S , et al. Atomic scale modelling of edge dislocation movement in the Fe-Cu system[J]. Modelling and Simulation in Materials Science and Engineering, 2000,8(2):181.
22 Hu S Y, Schmauder S, Chen L Q . Atomistic simulations of interactions between Cu precipitates and an edge dislocation in a BCC Fe single crystal[J]. Physica Status Solidi(b), 2000,220(2):845.
23 Lv G C, Zhang H, He X F , et al. Vacancy enhanced formation and phase transition of Cu-rich precipitates in α-iron under neutron irradiation[J]. AIP Advances, 2016,6(4):045004.
24 Kohler C, Kizler P, Schmauder S . Atomistic simulation of precipitation hardening in α-iron: Influence of precipitate shape and chemical composition[J]. Modelling and Simulation in Materials Science and Engineering, 2004,13(1):35.
25 Terentyev D, Malerba L . Interaction of a screw dislocation with Cu-precipitates, nanovoids and Cu-vacancy clusters in BCC iron[J]. Journal of Nuclear Materials, 2012,421(1):32.
26 4 Terentyev D, Malerba L, Bonny G , et al. Interaction of an edge dislocation with Cu-Ni-vacancy clusters in bcc iron[J]. Journal of Nuclear Materials, 2011,419(1):134.
27 5 Bacon D J, Osetsky Y N . Mechanisms of hardening due to copper precipitates in α-iron[J]. Philosophical Magazine, 2009,89(34-36):3333.
28 6 Osetsky Y N, Bacon D J, Mohles V . Atomic modelling of strengthening mechanisms due to voids and copper precipitates in α-iron[J]. Philosophical Magazine, 2003,83(31-34):3623.
29 7 Bonny G, Pasianot R C, Castin N , et al. Ternary Fe-Cu-Ni many-body potential to model reactor pressure vessel steels: First validation by simulated thermal annealing[J]. Philosophical magazine, 2009,89(34-36):3531.
30 8 Mendelev M I, Han S, Srolovitz D J , et al. Development of new interatomic potentials appropriate for crystalline and liquid iron[J]. Philosophical Magazine, 2003,83(35):3977.
31 9 Mishin Y, Farkas D, Mehl M J , et al. Interatomic potentials for monoatomic metals from experimental data and ab initio calculations[J]. Physical Review B, 1999,59(5):3393.
32 0 Pasianot R C, Malerba L . Interatomic potentials consistent with thermodynamics: the Fe-Cu system[J]. Journal of Nuclear Materials, 2007,360(2):118-127.
33 Terentyev D, Haghighat S M H, Sch?ublin R . Strengthening due to Cr-rich precipitates in Fe-Cr alloys: Effect of temperature and precipitate composition[J]. Journal of Applied Physics, 2010,107(6):061806.
34 Terentyev D, Malerba L, Bacon D J , et al. The effect of temperature and strain rate on the interaction between an edge dislocation and an interstitial dislocation loop in α-iron[J]. Journal of Physics:Condensed Matter, 2007,19(45):456211.
35 3 Minov B, Terentyev D, Van Renterghem , et al. Effect of low-temperature phase transition on mechanical behavior of Fe-Cu alloys[J]. Materials Science and Engineering:A, 2014,597:46.
36 4 Bilby B A, Miller K J, Willis J R . Fundamentals of deformation and fractures[R].Cambridge University Press, New York, 1985.
37 5 Scattergood R O, Bacon D J . The strengthening effect of voids[J]. Acta Metallurgica, 1982,30(8):1665.
38 6 Lv G, Zhang H, He X , et al. Atomistic simulation of Cu-Ni precipitates hardening in α-iron[J]. Journal of Physics D: Applied Physics, 2015,48(11):115302.
39 7 Hu S Y, Li Y L, Watanabe K . Calculation of internal stresses around Cu precipitates in the bcc Fe matrix by atomic simulation[J]. Modelling and Simulation in Materials Science and Engineering, 1999,7(4):641.
[1] 王杏娟, 靳贺斌, 朱立光, 朴占龙, 王博, 曲硕. B2O3对CaO-Al2O3-SiO2基连铸保护渣性能及结构的影响[J]. 材料导报, 2019, 33(8): 1395-1400.
[2] 刘朝, 邱舒怿, 黄红梅, 郭萍, 霍二光. 吸热型碳氢燃料正辛烷的热分解机理[J]. 材料导报, 2019, 33(8): 1251-1256.
[3] 盛鹰, 朱星亮, 曾祥国, 贾彬, 文军. 裂纹扩展和裂尖变形机理的多尺度耦合数值模拟方法[J]. 材料导报, 2019, 33(14): 2419-2425.
[4] 马玉聪, 樊保民, 郝华, 吕金玉, 杨彪, 冯云皓. 肉桂醛超分子缓蚀剂对冷凝水中铁含量的净化机理[J]. 材料导报, 2018, 32(20): 3660-3666.
[5] 喻选,辛勇. 聚合物注塑成型充模阶段流动取向分子机理研究[J]. 《材料导报》期刊社, 2018, 32(2): 327-332.
[6] 丁军, 汪建, 黄霞, 王路生, 赵昊男, 宋鹍. 含孔洞缺陷的单晶α-Ti单轴拉伸下的微观变形机理及力学性能[J]. 材料导报, 2018, 32(18): 3171-3180.
[7] 方 炜,王 磊. 碳纳米豆荚内C60分子的振荡行为[J]. 《材料导报》期刊社, 2018, 32(10): 1737-1742.
[8] 丁军, 刘泊, 王路生, 黄霞, 宋鹍. 微观尺度下单晶铜熔点多因素影响的分子动力学模拟研究[J]. 《材料导报》期刊社, 2017, 31(6): 147-152.
[9] 杨俊茹,王铭兰,刘树,孙绍帅,陈学成. 基于第一性原理的α-Fe(001)/Mo2FeB2(001)界面性能的研究*[J]. 材料导报编辑部, 2017, 31(22): 159-162.
[10] 林伟辉, 付甲, 王志华, 辛浩. 不同钙硅比水化硅酸钙力学性能的分子动力学模拟*[J]. 《材料导报》期刊社, 2017, 31(20): 158-163.
[11] 杨明君, 邓彬彬, 马占. 聚酰亚胺玻璃化转变的动力学模拟*[J]. 《材料导报》期刊社, 2017, 31(12): 136-139.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed