Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (20): 158-163    https://doi.org/10.11896/j.issn.1005-023X.2017.020.032
  计算模拟 |
不同钙硅比水化硅酸钙力学性能的分子动力学模拟*
林伟辉1, 付甲2, 王志华1, 辛浩1
1 太原理工大学应用力学与生物医学工程研究所,材料强度与结构冲击山西省重点实验室,太原 030024;
2 法国国立应用科学学院土木工程与机械工程实验室,雷恩 35708
Molecular Dynamics Simulations of Mechanical Properties of C-S-H Structures with Varying Calcium-to-Silicon Ratios
LIN Weihui1, FU Jia2, WANG Zhihua1, XIN Hao1
1 Shanxi Key Lab. of Material Strength & Structural Impact, Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024;
2 Laboratoire de Génie Civil et Génie Mécanique, INSA de Rennes, Rennes 35708
下载:  全 文 ( PDF ) ( 6055KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于Pellenq等的建模思路,构造了不同钙硅比(C/S)的水化硅酸钙(C-S-H)原子模型,采用分子动力学方法模拟了C-S-H在轴向拉伸载荷作用下的力学性能。重点比较分析了不同钙硅比的C-S-H在无水及含水情况下的拉伸应力-应变曲线。模拟结果表明:(1)与钙硅比为1.0的情况相比,钙硅比大于1.0时C-S-H结构的抗拉强度显著下降;(2)钙硅比大于1.0时,钙氧间的相互作用在承受载荷方面起重要作用,有效弥补了结构中因SiO2基团缺失引起的缺陷,使得C-S-H的强度下降程度趋缓;(3)当应变达到一定程度时,水分子能够切断钙氧间的相互作用,使得C-S-H结构的强度进一步降低甚至引起断裂失效。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林伟辉
付甲
王志华
辛浩
关键词:  分子动力学  水化硅酸钙  钙硅比  力学性能    
Abstract: The atomic structures of calcium silicate hydrate (C-S-H) with varying calcium-to-silicon (C/S) ratios were constructed by the cCSH models of Pellenq et al., and the mechanical properties of C-S-H structures under tensile loading were investigated using molecular dynamics (MD) method. The results from the molecular dynamics simulations showed that the tensile strength was decreased significantly when the C/S ratio was greater than 1.0, compared to the case of C/S=1.0. The interaction between calcium atoms and oxygen atoms played an important role under loading, which made up the shortfall caused by the lack of SiO2, and the decrease of the strength of C-S-H in the case of C/S>1.0 became slow. The water molecules helped to cut off the interaction between calcium atoms and oxygen atoms at a certain deformation degree, which reduced the strength of C-S-H till to the failure mode.
Key words:  molecular dynamics    calcium silicate hydrate    calcium-to-silicon ratio    mechanical properties
               出版日期:  2017-10-25      发布日期:  2018-05-05
ZTFLH:  O561.2  
  O341  
基金资助: *国家自然科学基金(11390362;11402164);山西省基础研究计划(2015021024);NSFC-广东联合基金超级计算科学应用研究专项资助及国家超级计算广州中心资助
作者简介:  林伟辉:男,1991年生,硕士研究生,研究方向为分子动力学模拟 E-mail:lwhtyut@163.com 辛浩:通讯作者,男,1982年生,博士,讲师,硕士研究生导师,研究方向为微纳米力学 E-mail:xinhao@tyut.edu.cn
引用本文:    
林伟辉, 付甲, 王志华, 辛浩. 不同钙硅比水化硅酸钙力学性能的分子动力学模拟*[J]. 《材料导报》期刊社, 2017, 31(20): 158-163.
LIN Weihui, FU Jia, WANG Zhihua, XIN Hao. Molecular Dynamics Simulations of Mechanical Properties of C-S-H Structures with Varying Calcium-to-Silicon Ratios. Materials Reports, 2017, 31(20): 158-163.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.020.032  或          http://www.mater-rep.com/CN/Y2017/V31/I20/158
1 Ye Jiayuan, Zhang Wensheng, Wang Hongxia, et al. Structure of calcium silicate hydrate Ca4Si6O14-(OH)4·2H2O simulated by the molecular dynamics[J]. J Chin Ceram Soc, 2010,38(12):2346(in Chinese).
叶家元,张文生,王宏霞,等.分子动力学模拟水化硅酸钙 Ca4Si6O14-(OH)4·2H2O的结构[J]. 硅酸盐学报, 2010,38(12):2346.
2 Hamid S A. The crystal structure of the 11Å natural tobermorite Ca2.25[Si3O7.5(OH)1.5]·1H2O [J]. Zeitschrift fur Kristallographie, 1981,154(3-4):189.
3 Murray S J, Subramani V J, Selvam R P, et al. Molecular dynamics to understand the mechanical behavior of cement paste[J]. Transportation Res Record J Transportation Res Board, 2010,2142(2142):75.
4 D′espinose De La Caillerie J, Lequeux N. Lecture on the structure of CSH, AFm and AFt phases[J]. Physique, Chimie et Mécanique des Matériaux Cimentaire, 2008,106(38):16102.
5 Allen A J, Thomas J J, Jennings H M. Composition and density of nanoscale calcium-silicate-hydrate in cement[J]. Nat Mater, 2007,6(4):311.
6 Pellenq R J, Kushima A, Shahsavari R, et al. A realistic molecular model of cement hydrates[J]. PNAS, 2009,106(38):16102.
7 Abdolhosseini Qomi M J, Krakowiak K J, Bauchy M, et al. Combinatorial molecular optimization of cement hydrates[J]. Nat Commun, 2014,5(4960):4960.
8 Manzano H, Moeini S, Marinelli F, et al. Confined water dissociation in microporous defective silicates:Mechanism, dipole distribution, and impact on substrate properties[J]. J Am Chem Soc, 2012,134(4):2208.
9 Cygan R T, Liang J J, Kalinichev A G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field[J]. J Phys Chem B, 2004,108(4):1255.
10Hou D, Zhu Y, Lu Y, et al. Mechanical properties of calcium silicate hydrate (C-S-H) at nano-scale:A molecular dynamics study[J]. Mater Chem Phys, 2014,146(3):503.
11Shahsavari R, Pellenq J M, Ulm F J. Empirical force fields for complex hydrated calcio-silicate layered materials[J]. Phys Chem Chem Phys, 2010,13(3):1002.12Hou D, Ma H, Zhu Y, et al. Calcium silicate hydrate from dry to saturated state:Structure, dynamics and mechanical properties[J]. Acta Mater, 2014,67(15):81.
13Hou D, Zhao T, Wang P, et al. Molecular dynamics study on the mode I fracture of calcium silicate hydrate under tensile loading[J]. Eng Fracture Mech, 2014,131:557.
14Janakiram Subramani V, Murray S, Panneer Selvam R, et al. Atomic structure of calcium silicate hydrates using Molecular Mechanics[C] ∥ Transportation Research Board 88th Annual Mee-ting. Washington D.C.,2009
15Klessig R, Polak E. Efficient implementations of the polak-ribière conjugate gradient algorithm[J]. SIAM J Control, 1972,10(3):524.
16Berendsen H, Grigera J, Straatsma T. The missing term in effective pair potentials[J]. J Phys Chem, 1987,91(24):6269.
17Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. J Comput Phys, 1995,117(1):1.
18Taylor H F W. Cement chemistry[J]. 2nd Edition. London:Tho-mas Telford,2007.
19Hewlett P. Lea′s chemistry of cement and concrete[M].4th Edition.Oxford: Elsevier Butterworth-Heinemann, 2003.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 刘朝, 邱舒怿, 黄红梅, 郭萍, 霍二光. 吸热型碳氢燃料正辛烷的热分解机理[J]. 材料导报, 2019, 33(8): 1251-1256.
[9] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[10] 王杏娟, 靳贺斌, 朱立光, 朴占龙, 王博, 曲硕. B2O3对CaO-Al2O3-SiO2基连铸保护渣性能及结构的影响[J]. 材料导报, 2019, 33(8): 1395-1400.
[11] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[12] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[13] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[14] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[15] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed