Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 301-306    https://doi.org/10.11896/j.issn.1005-023X.2018.02.028
  物理   材料研究 |材料 |
SiO2基酸化剂高温消解转炉钢渣中游离CaO的研究
尹啸,张崇民,杨骥,李博洋,王国承
辽宁省化学冶金重点实验室,鞍山 114051
Research on Stabilization of Free CaO in Basic Oxygen Furnace Slag with
Acidifier at High Temperature SiO2Bearing, , , ,
YIN Xiao, ZHANG Chongmin, YANG Ji, LI Boyang, WANG Guocheng
下载:  全 文 ( PDF ) ( 2231KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

转炉钢渣中游离CaO的水化膨胀是导致转炉钢渣体积安定性不良的重要原因。通过高温配加SiO2基酸化剂,改变w(SiO2)/w(CaO)对转炉钢渣进行稳钙改质处理。利用化学检测分析、X射线衍射和场发射扫描电子显微镜对SiO2基酸化剂高温消解转炉钢渣中游离CaO的效果和特征进行研究。结果表明,改质后的转炉钢渣的w(SiO2)/w(CaO)在0.37以上,就能满足钢渣中f-CaO低于3%的水泥和混凝土行业使用标准,且消解率达到60%以上,而当w(SiO2)/w(CaO)为0.67时,f-CaO低于1%,且消解率达到90%以上;改质前后转炉钢渣的矿相组成有明显差异,改质后转炉钢渣以硅酸二钙、镁黄长石、镁铁尖晶石、磁铁矿和铁铝酸钙相为主,并且镁黄长石相随着w(SiO2)/w(CaO)的增大而增多;转炉钢渣酸化稳钙前f-CaO被紧密包裹在矿相基体中,高温酸化改质后,团簇状聚集的f-CaO颗粒会嵌在硅酸盐相间,无明显包裹现象,尺寸为0.52 μm。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尹啸
张崇民
杨骥
李博洋
王国承
关键词:  转炉钢渣  SiO2基酸化剂  改质  游离CaO  矿相组成    
               出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  TF09  
基金资助: 国家自然科学基金(51174111)
引用本文:    
尹啸,张崇民,杨骥,李博洋,王国承. SiO2基酸化剂高温消解转炉钢渣中游离CaO的研究[J]. 《材料导报》期刊社, 2018, 32(2): 301-306.
Acidifier at High Temperature SiO2Bearing, , , , . Research on Stabilization of Free CaO in Basic Oxygen Furnace Slag with. Materials Reports, 2018, 32(2): 301-306.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.028  或          http://www.mater-rep.com/CN/Y2018/V32/I2/301
FeO Fe2O3 CaO SiO2 MgO
14.68 0.70 49.38 10.56 12.00
MnO Al2O3 P2O5 Others
5.25 2.02 2.61 2.80
表1  转炉钢渣的化学成分(质量分数/%)
图1  (a)转炉钢渣和(b)石英砂的表观形貌
Content S1 S2 S3 S4 S5
w(SiO2)/w(CaO) 0.37 0.42 0.48 0.56 0.67
w(f-CaO)/% 2.98 2.68 2.02 1.24 0.70
表2  不同w(SiO2)/w(CaO)条件下稳钙改质转炉钢渣中f-CaO的含量
图2  f-CaO消解率随w(SiO2)/w(CaO)的变化曲线
图3  转炉钢渣的XRD谱
Mineralogical phase S1 S2 S3 S4 S5
MgO·Fe2O3
CaO·MgO·2SiO2
2CaO·MgO·2SiO2
2CaO·SiO2
2CaO·Fe2O3
Ca2(Al,Fe)2O5
Fe3O4
Fe2O3
表3  改质后转炉钢渣的主要物相组成
Sample CaO MgO FeO MnO Al2O3 SiO2
BOFS 81.90 5.12 8.01 4.97
S2 79.55 5.57 6.44 5.98 2.47
表4  改质前后转炉钢渣中f-CaO的EDS分析(质量分数/%)
图4  改质前后转炉钢渣的XRD谱
图5  改质前后转炉钢渣的FESEM照片
Number Reaction ΔfGmΘ/(J·mol-1)
1 SiO2(s)+CaO(s)=
CaO·SiO2(s)
-92 500+2.5T
2 SiO2(s)+2CaO(s)=
2CaO·SiO2(s)
-118 800-11.3T
3 2SiO2(s)+3CaO(s)=
3CaO·2SiO2(s)
-236 800+9.6T
4 SiO2(s)+3CaO(s)=
3CaO·SiO2(s)
-118 800-6.7T
表5  主要硅酸钙化合物的标准生成吉布斯自由能
Content S1 S2 S3 BOFS
w(C3S)/w(C2S) 11.06 1.77 0.44
w(CaO)/w(C2S) 0.29 0.19 0.08 0.98
表6  C3S/C2S与CaO/C2S的质量比理论值
图6  CaO-SiO2二元相图[23]
No. Source Form Size/μm Characteristics
1 H Suito et al[25] Undissolved particles 3—30 Spongy, grainy
2 F Wachsmuth et al[26] Precipitate from melt <4 Grainy
3 J Waligora et al[5] Decomposition from C3S 1—3 Micro-inclusion
This work Before stabilization Undissolved particles+
Precipitate from melt
2—20 Ellipsoid-like
This work After stabilization Precipitate from melt+
Decomposition from C3S
0.5—2 Clustered ball-like
表7  钢渣中f-CaO的分类以及特征
1 Li G, Guo M . Current development of slag valorisation in China[J]. Waste & Biomass Valorization, 2014,5(3):317.
2 Yang G, Zhang H . Research on long-term variation tendency of f-CaO content in sodden aging steel slag based on holt-winters[J]. Materials Review B:Research Papers, 2015,29(12):112(in Chinese).
3 杨刚, 张浩 . 基于三次指数平滑法的水泡陈化钢渣中f-CaO含量长期变化趋势研究[J]. 材料导报:研究篇, 2015,29(12):112.
4 Engstr?m F, Adolfsson D, Yang Q , et al. Crystallization behaviour of some steelmaking slags[J]. Steel Research International, 2010,81(5):362.
5 Xu H J, Fu G Q, Zhu M Y . Experimentation on distensibility of steel slag[J]. Environmental Engineering, 2006,24(6):62(in Chinese).
6 徐红江, 付贵勤, 朱苗勇 . 钢渣膨胀性的实验[J]. 环境工程, 2006,24(6):62.
7 Waligora J, Bulteel D, Degrugilliers P , et al. Chemical and mineralogical characterizations of LD converter steel slags:A multi-analytical techniques approach[J]. Materials Characterization, 2010,61(1):39.
8 Shi C J . Steel slag-its production, processing, characteristics, and cementitious properties[J]. Journal of Materials in Civil Engineering, 2004,16(3):230.
9 Vaverka J, Sakurai K . Quantitative determination of free lime amount in steelmaking slag by X-ray diffraction[J]. ISIJ Internatio-nal, 2014,54(6):1334.
10 Juckes L M . The volume stability of modern steelmaking slags[J]. Mineral Processing and Extractive Metallurgy, 2003,112(3):177.
11 Geiseler J . Use of steelworks slag in Europe[J]. Waste Management, 1996,16(1-3):59.
12 10 俞海明, 王强 . 钢渣处理与综合利用[M]. 北京: 冶金工业出版社, 2015: 95.
13 Durinck D, Engstr?m F, Arnout S , et al. Hot stage processing of metallurgical slags[J]. Resources, Conservation and Recycling, 2008,52(10):1121.
14 Wu L, Hao Y D, Zhang K , et al. Exploratory experiment of high efficiency utilization with molten steel slag resource[J]. Environmental Engineering, 2015,33(12):147(in Chinese).
15 吴龙, 郝以党, 张凯 , 等. 熔融钢渣资源高效化利用探索试验[J]. 环境工程, 2015,33(12):147.
16 Motz H, Geiseler J . Products of steel slags an opportunity to save natural resources[J]. Waste Management, 2001,21(3):285.
17 Peter D, Andreas E, Michael K , et al. Recent development in slag treatment and dust recycling[J]. Steel Research International, 2010,80(10):737.
18 Zhang Y Z, Xing H W, Lei Y B , et al. Study on f-CaO digestion me-chanism of high alkalinity slags with iron ore tailings[J]. Chinese Journal of Environmental Engineering, 2012,6(5):1687(in Chinese).
19 张玉柱, 邢宏伟, 雷云波 , 等. 高碱度钢渣添加铁尾矿消解f-CaO的机理研究[J]. 环境工程学报, 2012,6(5):1687.
20 16 Lei Y B, Zhang Y Z, Xing H W, et al. Test to melt and dispel free CaO in converter slag added with powdered coal ash under high temperature[J].Heibei Metallurgy, 2011(1):8(in Chinese).
21 雷云波, 张玉柱, 邢宏伟 , 等. 转炉渣掺粉煤灰高温熔融消解游离CaO的试验[J].河北冶金, 2011(1):8.
22 Li Jianxin . Effect of modification at high temperature on the composition, structure and property of steel slag[D]. Guangzhou:South China University of Technology, 2010(in Chinese).
23 李建新 . 高温重构对钢渣组成、结构和性能影响的研究[D]. 广州:华南理工大学, 2010.
24 Li L S . Historical evolution and a vista of trend of converter slag recycling in future[J]. World Iron & Steel, 2011,11(4):62(in Chinese).
25 李辽沙 . 转炉渣资源化利用的历史沿革及趋势展望[J]. 世界钢铁, 2011,11(4):62.
26 Lu X, Li Y, Ma S , et al. Thermal equilibrium analysis and experiment of molten slag modification by use of its sensible heat[J]. Chinese Journal of Engineering, 2016,38(10):1386(in Chinese).
27 卢翔, 李宇, 马帅 , 等. 利用显热对熔渣进行直接改质的热平衡分析及试验验证[J]. 工程科学学报, 2016,38(10):1386.
28 Long Y, Lei Y B, Zhang Y Z , et al. Determination of free calcium oxide in steel slag by EDTA complexometric titration[J]. Metallurgical Analysis, 2010,30(7):65(in Chinese).
29 龙跃, 雷云波, 张玉柱 , 等. EDTA络合滴定法测定钢渣中游离氧化钙[J]. 冶金分析, 2010,30(7):65.
30 21 王海舟. 炉渣分析[M]. 北京: 科学出版社, 2006: 111.
31 22 黄希祜. 钢铁冶金原理[M]. 第4版.北京: 冶金工业出版社, 2013: 631.
32 Zaitsev A I, Zemchenko M A, Litvina A D , et al. Thermodynamic calculation of phase equilibria in the CaF2-SiO2-CaO system[J]. Journal of Materials Chemistry, 1993,3(5):541.
33 4 Yildirim I Z, Prezzi M . Chemical, mineralogical, and morphological properties of steel slag[J]. Advances in Civil Engineering, 2011,2011:1.
34 5 Inoue R, Suito H . Hydration of crystallized lime in BOF slags[J]. Transactions of the Iron & Steel Institute of Japan, 1995,35(3):272.
35 6 Wachsmuth F, Geiseler J, Fix W , et al. Contribution to the structure of BOF-slags and its influence on their volume stability[J]. Canadian Metallurgical Quarterly, 1981,20(3):279.
[1] 李小明, 沈苗, 王翀, 崔雅茹, 赵俊学. 镍渣资源化利用现状及发展趋势分析*[J]. 《材料导报》期刊社, 2017, 31(5): 100-105.
[2] 贺东风, 潘江涛, 曾凡博. 中钛型含钛高炉渣制微晶玻璃及其性能研究*[J]. 《材料导报》期刊社, 2017, 31(2): 126-129.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed