Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (6): 147-152    https://doi.org/10.11896/j.issn.1005-023X.2017.06.029
  计算模拟 |
微观尺度下单晶铜熔点多因素影响的分子动力学模拟研究
丁军, 刘泊, 王路生, 黄霞, 宋鹍
重庆理工大学机械工程学院, 重庆 400054
Microscale Molecular Dynamics Simulation of Different Factors Influence on
Melting Point of Single Crystal Copper
DING Jun, LIU Bo, WANG Lusheng, HUANG Xia, SONG Kun
School of Mechanical Engineering, Chongqing University of Technology, Chongqing 400054
下载:  全 文 ( PDF ) ( 2731KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于分子动力学方法,利用嵌入原子势(EAM)函数,在微观尺度下研究了影响单晶铜熔点的多种因素。首先利用势函数计算单晶铜的晶格常数和弹性常数,以此验证本研究所采用势函数的准确性,然后利用能量体积法、径向分布函数法和键对分析技术对模拟得到的结果进行分析,测得单晶铜熔点约为1 380 K。分析了模型大小、升温速率、晶体缺陷对铜熔点的影响,研究发现模型大小、升温速率对熔点的影响不大,随着升温速率的增大,达到熔点所需的时间越短。晶体缺陷的存在使金属材料晶格点阵稳定性下降,熔化需要的热量减少,熔点相应降低,与实际熔点情况一致。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁军
刘泊
王路生
黄霞
宋鹍
关键词:  分子动力学  单晶铜熔点  嵌入原子势  径向分布函数  键对分析    
Abstract: Based on the molecular dynamics method, the melting process of single crystal copper was simulated by embedded atom potential (EAM) function. Firstly, using the potential function, the lattice constants and elastic constants of single crystal copper were calculated to verify the accuracy of the selected potential function, which ensured the accuracy of the calculation of the mel-ting point of single crystal copper. Then, energy volume method, radial distribution function method and bond pair analysis technique were adopted to analyze the simulation results. The conclusion was that the melting point of single crystal copper was about 1 380 K. At the same time, the influence of model size, heating rate, crystal defects on melting point were also analyzed. It could be found that the model size and heating rate had little effect on the melting point. As the heating rate increased, the time required to reach the melting point was shorter. The existence of crystal defects leaded to the decrease of lattice stability of metallic materials, a reduction in the quantity of heat required by melting and a corresponding decrease of the melting point. Through the calculation and analysis, the melting point of single crystal copper in this paper was in line with the actual melting point.
Key words:  molecular dynamics    single crystal copper    embedded atom potential    radial distribution function    key pair analysis
               出版日期:  2017-03-25      发布日期:  2018-05-02
ZTFLH:  TG146.1  
基金资助: 国家自然科学基金联合基金(U1530140);国家自然科学基金(11302272);重庆市基础与前沿研究计划项目合同(CSTC2016JCYJA0517)
作者简介:  丁军:男,1978年生,博士,教授,研究方向为先进材料的力学性能研究、跨尺度数值模拟等 刘泊:男,硕士研究生,研究方向为跨尺度数值模拟,E-mail:dingjunawen@126.com
引用本文:    
丁军, 刘泊, 王路生, 黄霞, 宋鹍. 微观尺度下单晶铜熔点多因素影响的分子动力学模拟研究[J]. 《材料导报》期刊社, 2017, 31(6): 147-152.
DING Jun, LIU Bo, WANG Lusheng, HUANG Xia, SONG Kun. Microscale Molecular Dynamics Simulation of Different Factors Influence on
Melting Point of Single Crystal Copper. Materials Reports, 2017, 31(6): 147-152.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.06.029  或          http://www.mater-rep.com/CN/Y2017/V31/I6/147
1 Wen Yuhua, Zhu Ruzeng, Zhou Fuxin,et al. The key technology of molecular dynamics simulation [J]. Adv Mech,2003(1):65(in Chinese).
文玉华,朱如曾,周富信,等.分子动力学模拟的主要技术[J].力学进展,2003(1):65.
2 Chen Qiang, Cao Honghong, Huan Haibo. A research on the intera-tomic potential in molecular dynamics (MD) [J]. J Tianjin University of Technology,2004(2):101(in Chinese).
陈强,曹红红,黄海波.分子动力学中势函数研究[J]. 天津理工学院学报,2004(2):101.
3 Zhang Qiang, Liu Xiaomin. Calculation and verification of embedded atomic potential of titanium metal [J]. Development Application Mater,2013(3):31(in Chinese).
张强,刘小敏. 金属钛嵌入式原子势的计算及验证[J]. 材料开发与应用,2013(3):31.
4 Yang Hong, Lv Yongjun, Chen Min, et al. Molecular dynamics simulation of the melting point and specific heat of NiAl alloy [J]. Sci China (Series G: Physics and mechanics of Astronomy),2007(3):282(in Chinese).
杨弘,吕勇军,陈民,等.Ni3Al合金熔点与比热的分子动力学模拟[J]. 中国科学(G辑:物理学 力学 天文学),2007(3):282.
5 He Anmin, Qin Chensen, Shao Jianli, et al. The anisotropy of surface melting metal Al molecular dynamics simulation [J]. Acta Phys Sin,2009(4):2667(in Chinese).
何安民,秦承森,邵建立,等. 金属Al表面熔化各向异性的分子动力学模拟[J]. 物理学报,2009(4):2667.
6 Wang Hailong,Wang Xiuxi,Liang Haiye. Molecular dynamics simulation and analysis of bulckand surface melting processes for metal Cu [J]. Acta Metall Sin,2005(6):568(in Chinese).
王海龙,王秀喜,梁海弋.金属Cu体熔化与表面熔化行为的分子动力学模拟与分析[J]. 金属学报,2005(6):568.
7 Ju Yuanyuan,Zhang Qingming,Ji Guangfu,et al. Molecular dyna-mics simulation on melting of single crystal aluminum under static high pressure [J]. Acta Armamentarii,2014(S2):57(in Chinese).
巨圆圆,张庆明,姬广富,等.单晶铝静高压熔化的分子动力学模拟[J].兵工学报,2014(S2):57.
8 Wagner G J, Liu W K. Coupling of atomistic and continuum simulations using a bridging scale decomposition [J]. J Computational Phys,2003,190(1):249.
9 Allen M P. Tildesley D J. Computer simulation of liquids [M]. Oxford:Clarendon Press,Oxford University,1987.
10 Stillinger F H, Weber T A. Computer simulation of local order in condensed phases of silicon [J]. Phys Rev B,1985,31(8):5262.
11 Daw M S, Baskes M. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals [J]. Phys Rev B,1984,29(12):6443.
12 Finnis M, Sinclair J. A simple empirical N-body potential for transition metals [J]. Philosophical Magazine A,1984,50(1):45.
13 http://www.webelements.com/copper/crystal_structure.html.
14 Overton W C Jr, Gaffney J. Temperature variation of the elastic constants of cubic elements.Ⅰ. copper[J].Phys Rev,1995,98(4):969.
15 Berendsen H J C, Postma J P M, van Gunsteren W F, et al. Mole-cular dynamics with coupling to an external bath [J]. J Chem Phys,1984,81(8):3684.
16 孙民华,牛丽.液态物理概论[M].北京:科学出版社,2013:3.
17 Zhang Shiliang,Qi Li,Gao Wei,et al. Structural analysis and characterization methods in molecular simulation [J]. J Yanshan University,2015(3):213(in Chinese).
张世良,戚力,高伟,等.分子模拟中常用的结构分析与表征方法综述[J]. 燕山大学学报,2015(3):213.
18 Li Bin. The molecular dynamics simulation on the melting point of the nano-meter sized Au clusters [D]. Chongqing:Chongqing University,2008.
李斌. 纳米金原子团簇熔点的分子动力学模拟研究[D].重庆:重庆大学,2008.
[1] 刘朝, 邱舒怿, 黄红梅, 郭萍, 霍二光. 吸热型碳氢燃料正辛烷的热分解机理[J]. 材料导报, 2019, 33(8): 1251-1256.
[2] 王杏娟, 靳贺斌, 朱立光, 朴占龙, 王博, 曲硕. B2O3对CaO-Al2O3-SiO2基连铸保护渣性能及结构的影响[J]. 材料导报, 2019, 33(8): 1395-1400.
[3] 盛鹰, 朱星亮, 曾祥国, 贾彬, 文军. 裂纹扩展和裂尖变形机理的多尺度耦合数值模拟方法[J]. 材料导报, 2019, 33(14): 2419-2425.
[4] 马玉聪, 樊保民, 郝华, 吕金玉, 杨彪, 冯云皓. 肉桂醛超分子缓蚀剂对冷凝水中铁含量的净化机理[J]. 材料导报, 2018, 32(20): 3660-3666.
[5] 喻选,辛勇. 聚合物注塑成型充模阶段流动取向分子机理研究[J]. 《材料导报》期刊社, 2018, 32(2): 327-332.
[6] 豆艳坤,贺新福,贾丽霞,王东杰,吴石,杨文. Cu析出物对α-Fe辐照硬化贡献机理研究[J]. 《材料导报》期刊社, 2018, 32(2): 307-312.
[7] 丁军, 汪建, 黄霞, 王路生, 赵昊男, 宋鹍. 含孔洞缺陷的单晶α-Ti单轴拉伸下的微观变形机理及力学性能[J]. 材料导报, 2018, 32(18): 3171-3180.
[8] 方 炜,王 磊. 碳纳米豆荚内C60分子的振荡行为[J]. 《材料导报》期刊社, 2018, 32(10): 1737-1742.
[9] 林伟辉, 付甲, 王志华, 辛浩. 不同钙硅比水化硅酸钙力学性能的分子动力学模拟*[J]. 《材料导报》期刊社, 2017, 31(20): 158-163.
[10] 杨明君, 邓彬彬, 马占. 聚酰亚胺玻璃化转变的动力学模拟*[J]. 《材料导报》期刊社, 2017, 31(12): 136-139.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed