Please wait a minute...
材料导报  2019, Vol. 33 Issue (14): 2426-2430    https://doi.org/10.11896/cldb.18060066
  金属与金属基复合材料 |
镁铝金属间化合物的第一性原理研究
郑博1,2, 赵丽1,2, 董仕节1,2, 胡心彬1,2
1 湖北工业大学材料与化学工程学院,武汉 430068;
2 绿色轻工材料湖北省重点实验室,武汉 430068
First Principles Study on Mg-Al Intermetallic Compounds
ZHENG Bo1,2, ZHAO Li1,2, DONG Shijie1,2 , HU Xinbin1,2
1 School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068;
2 Hubei Provincial Key Laboratory of Green Materials for Light Industry, Wuhan 430068
下载:  全 文 ( PDF ) ( 2227KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用基于密度泛函理论的第一性原理平面波赝势法,计算了Mg17Al12和Mg23Al30相的形成热、结合能、电子结构、热力学性质、弹性性质和熔点。形成热和结合能计算结果表明,Mg17Al12相的结合能和形成热较小,说明Mg23Al30相较容易生成且稳定;电子结构计算表明,Mg23Al30相结构稳定的原因是键合作用较强;弹性常数计算结果表明,Mg23Al30为塑性相,Mg17Al12为脆性相;热力学性质计算表明,室温以上温度范围内,Mg23Al30的Gibbs自由能最小,热结构相对稳定。采用经验公式预测得到Mg23Al30、Mg17Al12均为低熔点合金。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑博
赵丽
董仕节
胡心彬
关键词:  镁合金  铝合金  金属间化合物  第一性原理    
Abstract: Planar wave pseudopotential method based on the first principle of density functional theory was employed to calculate the heats of formation, binding energy, electronic structures, thermodynamic properties, elastic properties and melting point of Mg17Al12 and Mg23Al30 phases.It could be found from the calculated results that Mg17Al12 phase showed smaller binding energy and heats of formation than Mg23Al30, indicating the easy generation and stability of Mg23Al30. The calculation results of electronic structures revealed that the stable structure of Mg23Al30 phase was derived from the strong bonding cooperation. Furthermore, it could be concluded that Mg23Al30 belonged to plastic phase and Mg17Al12 belonged to brittle phase according to elastic constant calculation results.The calculation of thermodynamic properties illustrated that Mg23Al30 possessed the smallest Gibbs free energyand a relatively stable thermal structure in the temperature range above room temperature. In addition, both Mg23Al30 and Mg17Al12 were predicted to be low melting point alloys by empirical formula.
Key words:  magnesium alloy    aluminum alloy    intermetallic compound    first-principles
                    发布日期:  2019-06-19
ZTFLH:  TG146.2  
基金资助: 国家重点研发计划(2016YFE0124300);绿色轻工材料湖北省重点实验室重点项目(201605)
通讯作者:  huxbshu@163.com   
作者简介:  郑博,1995年生,湖北武汉人,现就读于湖北工业大学材料与化学工程学院,硕士研究生,主要研究方向为镁铝异种合金搅拌摩擦焊技术、第一性原理计算。胡心彬,男,1970年12月生,博士(后),教授,硕士研究生导师。1994年7月湖北工学院(现湖北工业大学)机械系热加工工艺及设备专业本科毕业;2001年7月湖北工业大学材料加工专业硕士研究生毕业;2005年9月上海大学材料科学与工程学院材料学专业博士研究生毕业;2009年6月—2010年6月在加拿大滑铁卢大学机械工程学院做博士后研究。1994年7月留校任教至今,历任机械工程学院助教、讲师、副教授、教授。工作至今主持省部级科研项目6项,横向项目1项;参与国家973预研项目、国家支撑计划和国家自然科学基金各1项,参与其他纵横向项目20余项。发表文章近40篇,其中SCI收录5篇,EI收录15篇。专著1部,主编、副主编及参编教材各1部。获授权发明专利5项,获湖北省科技进步三等奖1项和湖北省技术发明奖二等奖各1项。现为中国机械工程学会热处理分会会员,中国机械工程学会失效分析分会模具专业委员会委员,湖北省热处理学会理事,湖北省无损检测学会理事等。
引用本文:    
郑博, 赵丽, 董仕节, 胡心彬. 镁铝金属间化合物的第一性原理研究[J]. 材料导报, 2019, 33(14): 2426-2430.
ZHENG Bo, ZHAO Li, DONG Shijie , HU Xinbin. First Principles Study on Mg-Al Intermetallic Compounds. Materials Reports, 2019, 33(14): 2426-2430.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18060066  或          http://www.mater-rep.com/CN/Y2019/V33/I14/2426
1 Wu R Y, Yang M B, Bi Y,et al. Journal of Chongqing University of Technology (Natural Science), 2017, 31(11), 65(in Chinese).
吴若愚,杨明波,毕媛,等.重庆理工大学学报(自然科学), 2017, 31(11), 65.
2 Zhang X,Lu Y H,Zheng H Y,et al. Journal of Chongqing University of Technology (Natural Science),2017, 31(3),82(in Chinese).
张醒,卢耀辉,郑何妍,等.重庆理工大学学报(自然科学), 2017, 31(3),82.
3 Chen, Z Y, Liang, et al. Journal of Materials Science & Technology, 2017, 4, 359.
4 Long Q, Lu F H, Zhang Y L, et al. Light Metals, 2018(2), 47(in Chinese).
龙琼,路坊海,张玉兰, 等.轻金属,2018(2), 47.
5 Liu L, Ren D, Liu F. Materials, 2014, 7(5), 3735.
6 Mohammadi J, Behnamian Y, Mostafaei A,et al.Materials Characterization, 2015, 101,189.
7 Wang D, Liu J, Xiao B L, et al. Acta Metallurgica Sinica,2010, 46(5), 589(in Chinese).
王东, 刘杰, 肖伯律, 等.金属学报, 2010, 46(5), 589.
8 Ben A A, Munzti A, Kohn G, et al. In:TMS Annual Meeting, Seattle, WA, United States, 2002, pp.295.
9 Liu Z J, Gong Y, Su Y M. Journal of Materials Engineering,2015, 43(3), 18(in Chinese).
刘政军,宫颖,苏允海.材料工程,2015,43(3),18.
10 Azizi A, Alimardan H. Transactions of Nonferrous Metals Society of China, 2016, 26(1),85.
11 Zhu Z T, Xue J Y, Chen H. Rare Metal Materials and Engineering, 2017, 46(7), 1977(in Chinese).
朱宗涛, 薛珺予, 陈辉. 稀有金属材料与工程,2017,46(7), 1977.
12 Yang X M, Hou H, Zhao Y H, et al. Rare Metal Materials and Enginee-ring, 2014,43(4), 875(in Chinese).
杨晓敏, 侯华, 赵宇宏, 等. 稀有金属材料与工程, 2014, 43(4), 875.
13 Zhou D W, Liu J S, Xu S H, et al. Physica B: Condensed Matter,2010, 405(13), 2863.
14 Wang N, Yu W Y, Tang B Y, et al. Journal of Physics D Applied Phy-sics, 2008, 41(19), 195408.
15 Schobinger P P, Fischer P. Naturwissenschaften, 1970, 57(3), 128.
16 Samson S, Gordon E K. Acta Crystallographica Section B, 1968, 24(8), 1004.
17 Clarke L J, Stich I, Payne M C. Computer Physics Communications, 1992, 72(1), 14.
18 Marlo M, Milman V. Physical Review B, 2000, 62(4), 2899.
19 Vanderbilt D. Physical Review B, 1990, 41(11), 7892.
20 Chen L, Peng P, Li G F, et al. Rare Metal Materials and Engineering, 2006, 35(7), 1065(in Chinese).
陈律, 彭平, 李贵发,等.稀有金属材料与工程, 2006, 35(7), 1065.
21 Huang Z W, Zhao Y H, Hou H, et al. Physica B Condensed Matter, 2012, 407(7), 1075.
22 Zhou D W, Xu S H, Zhang F Q,et al. Rare Metal Materials and Engineering,2011, 40(4), 640(in Chinese).
周惦武, 徐少华, 张福全,等.稀有金属材料与工程, 2011, 40(4), 640.
23 Tsuchiya T, Yamanaka T, Matsui M. Physics & Chemistry of Minerals, 2000, 27(3), 149.
24 Born M, Huang K. Dynamical Theory of Crystal Lattices,Clarendon Press, British, 1985.
25 Wu Z J, Zhao E J, Xiang H P, et al.Physical Review B, 2007, 76(5), 054115.
26 Gao L, Zhou J, Sun Z M, et al. Science Bulletin, 2011, 56(10), 1038.
27 Jhi S H, Ihm J, Louie S G, et al. Nature, 1998, 399(6732), 132.
28 Fine M E, Brown L D, Marcus H L. Scripta Metallurgica, 1984, 18(9), 951.
29 Li C, Hoe J L, Wu P. Journal of Physics & Chemistry of Solids, 2003, 64(2), 201.
30 Mehl M J, Osburn J E, Papaconstantopoulos D A, et al. Physical Review B, 1990, 41(15), 10311.
31 Chang Y C S, Ping L Z. Binary alloy phase-diagrams, Metallurgical Industry Press, China, 2004(in Chinese).
长崎诚三, 平林真. 二元合金状态图集,冶金工业出版社,2004.
[1] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[2] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[3] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[4] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[5] 彭鹏, 汤爱涛, 佘加, 周世博, 潘复生. 超细晶镁合金的研究现状及展望[J]. 材料导报, 2019, 33(9): 1526-1534.
[6] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[7] 卢百平, 崔春娟, 田露露, 问亚岗, 王佩. 布里奇曼定向凝固Ni-12%Si过共晶的弹性模量与断裂韧性[J]. 材料导报, 2019, 33(8): 1383-1388.
[8] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[9] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[10] 王一唱, 曹玲飞, 吴晓东, 邹衍, 黄光杰. 石油钻杆用7xxx系铝合金微观组织和性能的研究进展[J]. 材料导报, 2019, 33(7): 1190-1197.
[11] 王枭, 于晓华, 李晓宇, 刘成, 钟毅, 詹肇麟, 邓久帅. 纯Fe表面机械研磨处理对Ti原子扩散特性影响的第一性原理计算及实验验证[J]. 材料导报, 2019, 33(6): 1017-1021.
[12] 张旭昀, 王文泉, 郭斌, 郑冰洁, 吴戆, 王勇. CaCO3在Fe(100)表面成垢机制的第一性原理研究[J]. 材料导报, 2019, 33(6): 965-969.
[13] 陈志国, 方亮, 吴吉文, 张海筹, 马文静, 白月龙. 半固态挤压高硅铝合金二次加热的微观组织演变[J]. 材料导报, 2019, 33(6): 1006-1010.
[14] 宋雨来, 付洪德, 王震, 杨鹏聪. 镁合金的应力腐蚀开裂:机理、影响因素、防护技术[J]. 材料导报, 2019, 33(5): 834-840.
[15] 张潇华, 于思荣, 郭丽娟, 周扬理. 硅含量对Al-Si-Cu相变储能材料腐蚀性的影响[J]. 材料导报, 2019, 33(4): 582-585.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed