Please wait a minute...
材料导报  2018, Vol. 32 Issue (20): 3566-3572    https://doi.org/10.11896/j.issn.1005-023X.2018.20.013
  金属与金属基复合材料 |
AZ31镁合金微结构关联的孪生形核与长大统计分析
陈渊1,2, 蓝永庭3, 张克实1, 蔡敢为2, 胡桂娟1
1 广西大学土木建筑工程学院,南宁 530004;
2 广西大学机械工程学院,南宁 530004;
3 广西科技大学职业技术教育学院,柳州 545006;
A Statistical Analysis on Twin Nucleation and Growth Related to Microstructure of AZ31 Mg Alloy
CHEN Yuan1,2, LAN Yongting3, ZHANG Keshi1,CAI Ganwei2, HU Guijuan1
1 College of Civil Engineering and Architecture, Guangxi University, Nanning 530004;
2 School of Mechanical Engineering, Guangxi University, Nanning 530004;
3 School of Vocational and Technical Education, Guangxi University of Science and Technology, Liuzhou 545006;
下载:  全 文 ( PDF ) ( 5288KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了揭示金属镁合金晶粒大小、晶向及晶界倾角等微结构与孪生形核及长大之间的关联性,通过EBSD技术获取大量诸如晶粒尺寸、晶向及晶界倾角等微结构以及晶内孪生形核数、孪晶厚度等数据进行统计分析。对应变为4.9%的镁合金微结构的统计分析表明:晶粒大小、晶界倾角等微结构分布基本符合概率函数Weibull分布特征;大晶粒、高Schmid因子、小角度晶界有利于孪生形核,而孪晶长大对微结构的敏感度较弱;不是所有高Schmid因子的孪生变体都能够形核长大。由对孪生形核与长大随应变递增的演化分析结果可推测:相同晶粒内,不同位置对孪晶变体的形核强度有显著影响,很显然存在其他晶内微结构如缺陷、位错密度等对孪生形核产生重要影响;然而孪晶长大更多地受到晶内存在的孪生形核数和孪晶变体类型数量的强烈影响。本工作可为发展孪生形核长大与微结构的数学关系提供试验依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈渊
蓝永庭
张克实
蔡敢为
胡桂娟
关键词:  AZ31镁合金  材料微结构  Weibull分布  孪生形核与长大  孪晶变体    
Abstract: The present work aimed to extract the relationships between twin nucleation and growth and material microstructure in magnesium, and conducted a statistical analysis on EBSD-obtained numerous crystallographic test data such as grain size, crystal orientation, grain boundary misorientation and twin number, twin thick generated by electron backscattering diffraction (EBSD) technique. The statistical analysis of microstructure at a strain of 4.9% indicates that the distribution characteristics of grain size, grain boundary misorientation follow basically a Weibull distribution, and that large grains, high Schmid factors and low-angle grain boundaries are conducive to twin nucleation, but twin growth shows relatively low sensitiveness towards the above microstructure. But not all twin variants with high twin Schmid factors can nucleate and grow. The analyses of twin nucleation and growth at varying true strains also indicate that the intensities of twin variants nucleation at different position are inconsistent in the same grain due to other factors, such as defects, and dislocation, etc., that deeply influence twin nucleation. And on the other side, the twin growth rate strongly depends simultaneously on the number of twin nucleation and the number of twin variants. This work will provide a test basis for the exploration of mathematical relations between microstructure and twin nucleation & growth for Mg alloys.
Key words:  AZ31 Mg alloy    material microstructure    Weibull distribution    twin nucleation and growth    twin variants
               出版日期:  2018-10-25      发布日期:  2018-11-22
ZTFLH:  TG146  
  O344  
基金资助: 国家自然科学基金(11462002;11862002);广西自然科学基金(2016GXNSFAA380218);广西科技大学博士科学基金(校科博Z01)
作者简介:  陈渊:男,1970年生,博士研究生,主要从事结构工程、金属材料与固体力学等研究 E-mail:478706908@qq.com 蓝永庭:通信作者,男,1975年生,博士,副教授,主要从事镁合金等金属细观塑性行为的研究 E-mail:100000877@gxust.edu.cn
引用本文:    
陈渊, 蓝永庭, 张克实, 蔡敢为, 胡桂娟. AZ31镁合金微结构关联的孪生形核与长大统计分析[J]. 材料导报, 2018, 32(20): 3566-3572.
CHEN Yuan, LAN Yongting, ZHANG Keshi,CAI Ganwei, HU Guijuan. A Statistical Analysis on Twin Nucleation and Growth Related to Microstructure of AZ31 Mg Alloy. Materials Reports, 2018, 32(20): 3566-3572.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.20.013  或          http://www.mater-rep.com/CN/Y2018/V32/I20/3566
1 Zhang J X, Yu Q, Jiang Y Y, et al. An experimental study of cyclic deformation of extruded AZ61A magnesium alloy[J]. International Journal of Plasticity,2011,27(5):768.
2 Yu Q, Zhang J X, Jiang Y Y, et al. An experimental study on cyclic deformation and fatigue of extruded ZK60 magnesium alloy[J]. International Journal of Fatigue,2012,36(1):47.
3 Guo X Q, Chapuis A, Wu P D, et al. Experimental and numerical investigation of anisotropic and twinning behavior in Mg alloy under uniaxial tension[J]. Materials and Design,2016,98:333.
4 Beyerlein I J, Tome′ C N. A dislocation-based constitutive law for pure Zr including temperature effects[J]. International Journal of Plasticity,2008,24(5):867.
5 Brown D W, Sisneros T A, Clausen B, et al. Development of inter-granular thermal residual stresses in beryllium during cooling from processing temperatures[J]. Acta Materialia,2009,57(4):972.
6 Capolungo L, Beyerlein I J, Tome′ C N. Slip-assisted twin growth in hexagonal close-packed metals[J]. Scripta Materrialia,2009,60(1):32.
7 Godet S, Jiang L, Luoc A A, et al. Use of Schmid factors to select extension twin variants in extruded magnesium alloy tubes[J]. Scripta Materialia,2006,55(11):1055.
8 Zhan M Y, Li C M, Shang J L. Investigation of the plastic deformation mechanism and twinning of magnesium alloys[J]. Materials Review A: Review Papers,2011,25(2):1(in Chinese).
詹美燕,李春明,尚俊玲.镁合金的塑性变形机制和孪生变形研究[J].材料导报:综述篇,2011,25(2):1.
9 Hazeli K, Askari H, Cuadra J, et al. Microstructure-sensitive investigation of magnesium alloy fatigue[J]. International Journal of Plasticity,2015,68:55.
10 Vaidya S, Mahajan S. Accommodation and formation of {1121} twins in Co single crystals[J]. Acta Metallurgica,1980,28(8):1123.
11 Beyerlein I J, Capolungo L, Marshall P E, et al. Statistical analyses of deformation twinning in magnesium[J]. Philosophical Magazine,2010,90(16):2161.
12 Beyerlein I J, McCabe R J, Tome C N. Effect of microstructure on the nucleation of deformation twins in polycrystalline high-purity magnesium: A multi-scale modeling study[J]. Journal of the Mechanics and Physics of Solids,2011,59(5):988.
13 Juan P A, Pradalier C, Berbenni S, et al. A statistical analysis of the influence of microstructure and twin-twin junctions on twin nucleation and twin growth in Zr[J]. Acta Materialia,2015,95:399.
14 Serra A, Bacon D J, Pond R C. The crystallography and core structure of twinning dislocations in hcp metals[J]. Acta Metallurgica,1988,36 (12):3183.
15 Christian J W, Mahajan S. Deformation twinning[J]. Progress in Materials Science,1995,39(1):1.
16 Wang J, Beyerlein I J, Tome′ C N. An atomic and probabilistic perspective on twin nucleation in Mg[J]. Scripta Materialia,2010,63(7):741.
17 Wang J, Beyerlein I J, Hirth J P, et al. Twinning dislocations on {1011} and {1013} planes in hexagonal close-packed crystals[J]. Acta Materialia,2011,59(10):3990.
18 Lv X Z, Zhang J X, Harada H. Twin-dislocation and twin-twin interactions during cyclic deformation of a nickel-base single crystal TMS-82 superalloy[J]. International Journal of Fatigue,2014,66(18):246.
19 Capolungo L, Marshall P, McCabe R J, et al. Nucleation and growth of twins in Zr: A statistical study[J]. Acta Materialia,2009,57(20):6047.
20 Barnett M R. A rationale for the strong dependence of mechanical twinning on grain size[J]. Scripta Materialia,2008,59(7):696.
21 Jain A, Duygulu O, Brown D W, et al. Grain size effects on the tensile properties and deformation mechanisms of a magnesium alloy AZ31B sheet[J]. Materials Science and Engineering A,2008,486(1):545.
22 Fan H D, Aubry S, Arsenlis A, et al. Grain size effects on dislocation and twinning mediated plasticity in magnesium[J]. Scripta Materialia,2016,112:50.23 Capolungo L, Marshall P E, McCabe R J, et al. Nucleation and growth of twins in Zr: A statistical study[J]. Acta Materialia,2009,57(20):6047.
24 Beyerlein I J, Capolungo L, Marshall P E, et al. Statistical analyses of deformation twinning in magnesium[J]. Philosophical Magazine,2010,90(16):2161.
25 Xin Y C, Wang M Y, Zeng Z, et al. Strengthening and toughening of magnesium alloy by {1012} extension twins[J]. Scripta Materialia,2012; 66(1):25.
26 Wu L, Agnew S R, Ren Y, et al. The effects of texture and extension twinning on the low-cycle fatigue behavior of a rolled magne-sium alloy AZ31B[J]. Materials Science and Engineering,2010,527(26):7057.
27 Mokdad F, Chen D L, Li D Y. Single and double twin nucleation, growth, and interaction in an extruded magnesium alloy[J]. Mate-rials and Design,2017,119:376.
28 Mokdad F, Chen D L. Cyclic deformation and anelastic behavior of ZEK100 magnesium alloy: Effect of strain ratio[J]. Materials Science and Engineering A,2015,640:243.
29 Kwon H, Nakano H, Mabuchi M, et al. Twinning behaviour of AZ31 Mg alloy alternately compressed in two orthogonal directions[J]. Philosophical Magazine,2014,94(34):3960.
30 Kadiri H E, Kapil J, Oppedal A L, et al. The effect of twin-twin interactions on the nucleation and propagation of {1012} twinning in magnesium[J]. Acta Materialia,2013,61(10):3549.
[1] 乔宏霞, 郭向柯, 朱彬荣. 三参数Weibull分布的多因素作用下混凝土加速寿命试验[J]. 材料导报, 2019, 33(4): 639-643.
[2] 万镇昂, 马昆林, 龙广成, 谢友均. 基于Weibull分布和残余应变的SCC疲劳损伤本构模型[J]. 材料导报, 2019, 33(4): 634-638.
[3] 俞良良, 张郑, 王快社, 王文, 贾少伟. 搅拌摩擦加工对AZ31镁合金微观组织及力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1289-1293.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed