Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (8): 1289-1293    https://doi.org/10.11896/j.issn.1005-023X.2018.08.016
  材料研究 |
搅拌摩擦加工对AZ31镁合金微观组织及力学性能的影响
俞良良1,2, 张郑1,2, 王快社1,2, 王文1,2, 贾少伟1,2
1 西安建筑科技大学冶金工程学院,西安 710055;
2 西安建筑科技大学功能材料加工国家地方联合工程研究中心,西安 710055
Effect of Friction Stir Processing on Microstructure and Mechanical Properties of AZ31 Magnesium Alloy
YU Liangliang1,2, ZHANG Zheng1,2, WANG Kuaishe1,2, WANG Wen1,2, JIA Shaowei1,2
1 College of Metallurgy Engineering, Xi’an University of Architecture and Technology, Xi’an 710055;
2 National and Local Joint Engineering Research Center of Function Material Processing,Xi’an University of Architecture and Technology, Xi’an 710055
下载:  全 文 ( PDF ) ( 2934KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用搅拌摩擦加工技术(Friction stir processing, FSP)对AZ31镁合金板材进行了单道次加工,研究了加工区域微观组织对力学性能的影响。结果表明,相同前进速度下,旋转速度升高,平均晶粒尺寸增大。搅拌摩擦加工后,晶粒尺寸和织构变化显著影响AZ31镁合金的力学性能,平均晶粒尺寸越大,越易发生孪生变形。织构类型主要包括基面织构和纤维织构。基面织构位于软位向时,屈服强度降低,但纤维织构会弱化基面织构对力学性能的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
俞良良
张郑
王快社
王文
贾少伟
关键词:  搅拌摩擦加工  AZ31镁合金  力学性能  晶粒尺寸  织构    
Abstract: AZ31 magnesium alloy plates were fabricated by friction stir processing(FSP), and the microstructure and mecha-nical properties of the processed region were studied. The results showed that the average grain size increased as a result of increasing rotation speed under the same travelling speed. After FSP, grain size and texture affect the mechanical properties of AZ31 magnesium alloy significantly, the twin deformation would be more likely to occur with greater average grain size. Texture type mainly included basal plane texture and fiber texture, while the yield strength was lower when basal plane texture was in the soft orientation, but fiber texture would weaken the influence of basal plane texture of mechanical properties.
Key words:  friction stir processing    AZ31 magnesium alloy    mechanical properties    grain size    texture component
               出版日期:  2018-04-25      发布日期:  2018-05-11
ZTFLH:  TG146  
基金资助: 国家自然科学基金(51574192;51274161;U1360105;51404180)
通讯作者:  王文:通信作者,1985年生,工程师,主要研究方向为有色金属的搅拌摩擦焊接和搅拌摩擦加工 E-mail:282361936@qq.com   
作者简介:  男,1991年生,硕士研究生,主要从事搅拌摩擦加工研究 E-mail:xauatyll@163.com
引用本文:    
俞良良, 张郑, 王快社, 王文, 贾少伟. 搅拌摩擦加工对AZ31镁合金微观组织及力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1289-1293.
YU Liangliang, ZHANG Zheng, WANG Kuaishe, WANG Wen, JIA Shaowei. Effect of Friction Stir Processing on Microstructure and Mechanical Properties of AZ31 Magnesium Alloy. Materials Reports, 2018, 32(8): 1289-1293.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.08.016  或          http://www.mater-rep.com/CN/Y2018/V32/I8/1289
1 陈振华.变形镁合金[M].北京:化学工业出版社,2005:1.
2 Li Nali, Huang Guangjie, Liu Qing. Application of EBSD technique on the study of the texture of extruded AZ31 magnesium alloy[J].Journal of Chinese Electron Microscopy Society,2011,30(10):309(in Chinese).
李娜丽,黄光杰,刘庆.EBSD技术在研究AZ31镁合金挤压织构中的应用[J].电子显微学报,2011,30(10):309.
3 Mishra R S, Ma Z Y. Friction stir welding and processing[J].Mate-rial Science and Engineering A,2005,50:1.
4 Mishra R S, Mahoney M W. Friction stir processing: A new grain refinement technique to achieve high strain rate superplasticity in commercial alloys[J].Materials Science Forum,2001,357-359:507.
5 Xu N, Bao Y F. Enhanced mechanical properties of tungsten inert gas welded AZ31 magnesium alloy joint using two-pass friction stir processing with rapid cooling[J].Material Science and Engineering A,2016,665:292.
6 Chai F, Zhang D T, Li Y Y. Microstructures and tensile properties of submerged friction stir processed[J].Journal of Magnesium and Alloys,2015,50(8):203.
7 Pan F S, Xu A L, Deng D, et al. Effects of friction stir welding on microstructure properties of magnesium alloy Mg-5Al-3Sn AZ91 magnesium alloy and mechanical[J].Materials Design,2016,110:266.
8 Cao G H, Zhang D T, Zhang W, et al. Microstructure evolution and mechanical properties of Mg-Nd-Y alloy in different friction stir processing conditions[J].Journal of Alloys and Compounds,2015,636:12.
9 Yang Q, Xiao B L, Zhang Q, et al. Exceptional high-strain-rate superplasticity in Mg-Gd-Y-Zn-Zr alloy with long-period stacking order phase[J].Scripta Materialia,2013,69(s11-12):801.
10 Chang C I, Du X H, Huang J C. Achieving ultrafine grain size in Mg-Al-Zn alloy by friction stir processing[J].Scripta Materialia,2007,57(3):209.
11 Lu D, Jiang Y, Zhou R. Wear performance of nano-Al2O3 particles and CNTs reinforced magnesium matrix composites by friction stir processing[J].Wear,2013,305(1-2):286.
12 Liu W C, Morris J G. Comparison of the texture evolution in cold rolled DC and SC AA 5182 aluminum alloy[J].Material Science and Engineering A,2003,339(1-2):183.
13 Liu W C, Zhai T, Morris J G. Comparison of recrystallization and recrystallization textures in cold-rolled DC and CC AA 5182 aluminum alloys[J].Material Science and Engineering A,2003,358(1):84.
14 Liu W C, Li J, Yuan H, et al. Effect of recovery on the recrystallization texture of an Al-Mg alloy[J].Scripta Materialia,2007,57(9):833.
15 Frigaard Q, Grong Q, Milding O T. A process of friction stir wel-ding of age harding aluminum alloy[J].Metallurgical and Materials Transactions A,2001,32(5):1189.
16 Gao Xue. Study on room temperature deformation behavior of AZ31 magnesium alloy prepared by friction stir processing[D].Xi’an: Xi’an University of Architecture and Technology,2015(in Chinese).
高雪.搅拌摩擦加工AZ31镁合金室温变形行为的研究[D].西安:西安建筑科技大学,2015.
17 Xiong Feng, Zhang Datong, Wang Saixiang, et al. Influence of processing parameters on microstructure and mechanical properties of AZ31 alloy by friction stir welding[J].Hot Working Technology,2011,40(3):1(in Chinese).
熊峰,张大童,王赛香,等.加工参数对搅拌摩擦加工AZ31镁合金组织和力学性能的影响[J].热加工工艺,2011,40(3):1.
18 Wang Saixiang, Zhang Datong. Microstructure and mechanical pro-perties of frictional stirring processed(FSP) MB8 magnesium alloy[J].Special Casting & Nonferrous Alloys,2011,31(1):83(in Chinese).
王赛香,张大童.搅拌摩擦加工MB8镁合金的组织与力学性能分析[J].特种铸造及有色合金,2011,31(1):83.
19 Hung F Y, Shih C C, Chen L H. Microstructures and high temperature mechanical properties of friction stirred AZ31-Mg alloy[J].Journal of Alloys and Compounds,2007,428:106.
20 Wang Y N, Chang C I, Lee C J, et al. Texture and weak grain size dependence in friction stir processed Mg-Al-Zn alloy[J].Scripta Materialia,2006,55(7):637.
21 Yuan W, Mishra R S, Carlson B, et al. Effect of texture on the mechanical behavior of ultrafine grained magnesium alloy[J].Scripta Materialia,2011,64:580.
22 Kim W J, Hong S I, Kim Y S, et al. Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing[J].Acta Materialia,2003,51(11):3293.
23 Barnett M R, Keshavarz Z, Beer A G, et al. Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn[J].Acta Materialia,2004,52(17):5093.
24 Zhan Meiyan, Li Chunming, Shang Junling. Investigation of the plastic deformation mechanism and twinning of magnesium alloys[J].Materials Review A:Review Papers,2011,25(2):1(in Chinese).
詹美燕,李春明,尚俊玲.镁合金的塑性变形机制和孪生变形研究[J].材料导报:综述篇,2011,25(2):1.
25 Ding Wenjiang, Jin Li, Wu Wenxiang, et al. Texture and texture optimization of wrought Mg alloy[J].The Chinese Journal of Nonferrous Metals,2011,21(10):2371(in Chinese).
丁文江,靳丽,吴文祥,等.变形镁合金中的织构及其优化设计[J].中国有色金属学报,2011,21(10):2371.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[9] 陈琛辉, 蒋璐瑶, 刘成龙, 黄伟九, 郭勇义, 胥桥梁. 搅拌摩擦加工细晶TA2工业纯钛晶粒长大规律[J]. 材料导报, 2019, 33(8): 1367-1370.
[10] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[11] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[12] 何承绪, 涂蕴超, 孟利, 杨富尧, 刘洋, 马光, 韩钰, 陈新. 超薄取向硅钢组织及织构与磁性能的关系[J]. 材料导报, 2019, 33(6): 1027-1031.
[13] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[14] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[15] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed