Please wait a minute...
材料导报  2019, Vol. 33 Issue (4): 639-643    https://doi.org/10.11896/cldb.201904014
  无机非金属及其复合材料 |
三参数Weibull分布的多因素作用下混凝土加速寿命试验
乔宏霞1,郭向柯1,朱彬荣2
1 兰州理工大学土木工程学院,兰州 730050;
2 东南大学土木工程学院,南京 211189
Accelerated Life Test of Concrete Under Multiple Factors Based on
Three-parameter Weibull Distribution
QIAO Hongxia1, GUO Xiangke1, ZHU Binrong2
1 College of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050;
2 College of Civil Engineering, Southeast China University, Nanjing 211189
下载:  全 文 ( PDF ) ( 2428KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 针对中国西部盐渍土地区混凝土耐久性较差的突出问题,设计了模拟自然环境的室内混凝土加速寿命试验,其中包括盐卤腐蚀、干湿循环、冻融循环和太阳辐射。采用动弹性模量作为评价混凝土耐久性失效阈值,得到混凝土加速寿命数据。基于三参数Weibull分布,运用概率分析软件对寿命数据进行分析预测,得到加速寿命分布概要图。结果表明,三参数Weibull分布能够很好地拟合加速寿命数据样本点;其阈值参数可直观反映混凝土开始退化失效的时间;其分布概要图可直观反映加速退化过程中的可靠性,从而为混凝土耐久性评估提供新的可靠性依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
QIAO Hongxia
GUO Xiangke
ZHU Binrong
关键词:  混凝土  加速寿命试验  三参数Weibull分布  分布拟合  寿命预测    
Abstract: Aiming at the extrusive problem of poor durability of concrete in saline soil area of western China, the indoor accelerated life test of concrete was designed to simulate natural environment, including halide corrosion, wet and dry cycle, freeze-thaw cycle and solar radiation. The dynamic modulus of elasticity was adopted as the to failure threshold to evaluate the durability of concrete, and the accelerated life data of concrete were obtained. Based on the three-parameter Weibull distribution, the probability analysis software was employed to analyze and predict the life data, and the distribution overview plot-arbitrary cens of accelerated life was acquired. It could be found from the results that the sample points of accelerated life data could be well fitted by three-parameter Weibull distribution. Moreover, the failure time of concrete durability degradation and reliability of accelerated degradation process could be directly reflected by its threshold parameter and distribution overview plot-arbitrary cens, respectively, which provides a novel reliability basis for durability evaluation of concrete.
Key words:  concrete    accelerated life test    three-parameter Weibull distribution    distribution fitting    life prediction
               出版日期:  2019-02-25      发布日期:  2019-03-11
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51468039;51868044)
作者简介:  乔宏霞,兰州理工大学土木工程学院教授、博士研究生导师。2000年7月本科毕业于太原理工大学建筑与土木工程学院,2007年7月在兰州理工大学结构工程专业取得博士学位,2009—2012年在中国科学院青海盐湖研究所化学博士后流动站从事博士后研究工作。现为AEIC 专家库成员、国家科技部核心库专家、教育部学位中心学位论文评审专家、国家自然科学基金项目同行评议专家,入选九三学社中央组织的“院士导师计划”合作导师。主要从事普通混凝土与氯氧镁水泥混凝土耐久性评估与寿命预测的研究工作。近年来,在混凝土领域发表论文90余篇,包括Journal of Materials in Civil Engineering、Computers & Concrete、Materials Research InnovationsJournal of Chemical and Pharmaceutical Research等期刊文献。郭向柯,现为兰州理工大学土木工程学院硕士研究生,在乔宏霞教授的指导下进行研究。目前主要研究领域为氯氧镁水泥钢筋混凝土耐久性评估与寿命预测。
引用本文:    
乔宏霞, 郭向柯, 朱彬荣. 三参数Weibull分布的多因素作用下混凝土加速寿命试验[J]. 材料导报, 2019, 33(4): 639-643.
QIAO Hongxia, GUO Xiangke, ZHU Binrong. Accelerated Life Test of Concrete Under Multiple Factors Based on
Three-parameter Weibull Distribution. Materials Reports, 2019, 33(4): 639-643.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201904014  或          http://www.mater-rep.com/CN/Y2019/V33/I4/639
1 Jin Z Q. Durability and life prediction of concrete exposed to harsh environment in western China. Ph.D. Thesis, Southeast China University, China,2006(in Chinese).金祖权.西部地区严酷环境下混凝土的耐久性与寿命预测.博士学士论文,东南大学,2006.2 Omrane M, Kenai S, Kadri E H, et al. Journal of Cleaner Production,2017,165,415.3 Afroughsabet V, Biolzi L, Ozbakkaloglu T. Composite Structures,2017,181,1124.4 Wang J, Ersan Y C, Boon N, et al. Applied Microbiology & Biotechnology,2016,100(7),2993.5 Yang L F, Zhou M, Chen Z. Journal of Civil Engineering,2014(10),70(in Chinese).杨绿峰,周明,陈正.土木工程学报,2014(10),70.6 Ta V L, Bonnet S, Kiesse T S, et al. Construction & Building Materials,2016,129,172.7 Demis S, Efstathiou M P, Papadakis V G. Cement & Concrete Compo-sites,2014,47(3),9.8 Van B B, Van d H P, Van T K, et al. Materials,2016,10(1),5.9 Kuosa H, Ferreira R M, Holt E, et al. Cement & Concrete Composites,2014,47(47),32.10 Ryan P C, O’Connor A J. Construction & Building Materials,2013,47(10),1106.11 Jin Z, Zhao X, Zhao T, et al. Journal of Advanced Concrete Technology,2016,14(4),172.12 Kashani M M, Crewe A J, Alexander N A. Corrosion Science, 2013,73(13),208.13 Gan Z W, Jin W L, Gao M Z. Journal of Building Structures,2011,32(2),41(in Chinese).干伟忠,金伟良,高明赞.建筑结构学报,2011,32(2),41.14 Zou F, Tan H, Guo Y, et al. Journal of Industrial & Engineering Che-mistry,2017,55(80),91.15 Develi I, Kabalci Y. Journal of Applied Research & Technology,2016,14(2),101.16 Bilim M, Kapucu N, Develi I. Iet Communications,2017,11(7),993.17 Yin Z G, Feng J, Huang S Y, et al. Applied Mechanics & Materials,2014,584-586,1626.18 Nie Y F, Qian C X. Journal of Southeast University(Natural Science Edition),2013,43(3),594(in Chinese).聂彦锋,钱春香.东南大学学报(自然科学版),2013,43(3),594.19 Qiao H X, Zhu B R, Lu C G. Journal of Building Materials,2017,20(2),191(in Chinese).乔宏霞,朱彬荣,路承功.建筑材料学报,2017,20(2),191.20 Foy C, Pigeon M, Banthia N. Cement & Concrete Research,1988,18(4),604.21 Wang K, Nelsen D E, Nixon W A. Cement & Concrete Composites,2006,28(2),173.22 Sotiriadis K, Nikolopoulou E, Tsivilis S. Cement & Concrete Composites,2012,34(8),903.23 Lei G. Parameter estimation of Weibull distribution life data. Ph.D. Thesis, Huazhong University of Science and Technology(HUST), China,2006(in Chinese).雷刚.Weibull分布寿命数据的参数估计.博士学位论文,华中科技大学,2006.24 Deng F F. MATLAB R2015b probability and mathematical statistics, Tsinghua University Press, China,2010(in Chinese).邓奋发. MATLAB R2015b概率与数理统计,清华大学出版社,2017.25 Ma F S. Modern practical statistics based on MINITAB, China Renmin University Press, China,2014(in Chinese).马逢时.基于MINITAB的现代实用统计,中国人民大学出版社,2014.
[1] 李地红, 夏娴, 王艳君, 张景卫, 许国栋. 镶嵌式混凝土构件加固、补强、修复技术研究[J]. 材料导报, 2019, 33(z1): 225-228.
[2] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[3] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[4] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[5] 李地红, 夏娴, 高群, 代函函, 于海洋. 镶嵌式加固混凝土构件加固区域力学行为的有限元分析[J]. 材料导报, 2019, 33(z1): 249-253.
[6] 黄艳玲, 元强, 刘耀强, 赵虎, 王跃跃, 左胜浩, 周大军, 孙泽川. 外加剂对半流动性自密实混凝土滑模施工性能的影响[J]. 材料导报, 2019, 33(z1): 254-260.
[7] 夏娴, 李地红, 高群, 代函函, 于海洋. 基于ABAQUS的镶嵌式混凝土加固、修复技术研究[J]. 材料导报, 2019, 33(z1): 269-273.
[8] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[9] 李霖皓, 龙广成, 刘芳萍, 石晔, 马聪, 谢友均. 混凝土在蒸养过程中的变形性能[J]. 材料导报, 2019, 33(8): 1322-1327.
[10] 王家滨, 牛荻涛. 喷射混凝土的硝酸侵蚀:孔溶液H+与NO3-的扩散规律及侵蚀机理[J]. 材料导报, 2019, 33(6): 991-999.
[11] 万镇昂, 马昆林, 龙广成, 谢友均. 基于Weibull分布和残余应变的SCC疲劳损伤本构模型[J]. 材料导报, 2019, 33(4): 634-638.
[12] 吴彰钰, 余红发, 麻海燕, 冯滔滔, 达波. 基于可靠度的海洋浪溅区大掺量矿渣混凝土结构服役寿命预测[J]. 材料导报, 2019, 33(2): 264-270.
[13] 高小建, 李双欣. 微波养护对掺矿渣超高性能混凝土力学性能的影响及机理[J]. 材料导报, 2019, 33(2): 271-276.
[14] 王潇舷, 金祖权, 姜玉丹, 陈凡秀. 基于DIC与应变测试的混凝土中钢筋锈胀应力分析[J]. 材料导报, 2019, 33(16): 2690-2696.
[15] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed