Please wait a minute...
材料导报  2018, Vol. 32 Issue (16): 2832-2836    https://doi.org/10.11896/j.issn.1005-023X.2018.16.024
  金属与金属基复合材料 |
Fe及Fe83Ga17和Fe83Ga17Pr0.3合金的微结构与磁致伸缩性能
赵丽娟1, 田晓1, 姚占全2, 江丽萍3
1 内蒙古师范大学物理与电子信息学院, 功能材料物理与化学自治区重点实验室,呼和浩特 010022;
2 内蒙古农业大学水利与土木建筑工程学院,呼和浩特 010018;
3 包头稀土研究院,包头 014030
Microstructure and Magnetostriction of Fe, Fe83Ga17 and Fe83Ga17Pr0.3 Alloys: a Comparative Study
ZHAO Lijuan1, TIAN Xiao1, YAO Zhanquan2, JIANG Liping3
1 Key Laboratory for Physics and Chemistry of Functional Materials, School of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022;
2 School of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018;
3 Baotou Research Institute of Rare Earths, Baotou 014030
下载:  全 文 ( PDF ) ( 1761KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究对比研究了Fe、Fe83Ga17及Fe83Ga17Pr0.3磁致伸缩材料的微结构与磁致伸缩性能。采用真空非自耗电弧炉在氩气保护下熔炼制备了合金样品。采用X射线衍射仪(XRD) 和光学显微镜(OM)分析观察了合金样品的晶体结构和显微组织。采用扫描电镜配合能谱仪(SEM/EDS) 测定了稀土Pr元素在Fe83Ga17Pr0.3合金中的分布。通过电阻应变法测量了合金的磁致伸缩性能。结果表明:Fe和Fe83Ga17合金均由单一的bcc结构A2相组成,而Fe83Ga17Pr0.3合金由A2主相和少量的富稀土Pr相组成。稀土Pr掺杂使合金中的A2相沿〈100〉晶向择优取向。Fe及Fe83Ga17和Fe83Ga17Pr0.3合金的微观组织分别呈现细长的条状晶、晶粒粗大的等轴晶和晶粒细小的柱状晶。Fe的磁致伸缩系数为负值,而Fe83Ga17和Fe83Ga17Pr0.3合金的磁致伸缩系数均为正值,三种材料的磁致伸缩系数绝对值的排序为Fe < Fe83Ga17< Fe83Ga17Pr0.3
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵丽娟
田晓
姚占全
江丽萍
关键词:  磁致伸缩  Fe-Ga合金  稀土掺杂  微结构    
Abstract: The present work aimed to comparatively analyze microstructure and magnetostriction of Fe, and Fe83Ga17 and Fe83-Ga17Pr0.3 magnetostrictive alloys. We successfully prepared the alloys by employing a non-consumable vacuum arc melting furnace and applying a protective argon atmosphere, and observed crystal structures and surface morphologies of the alloys via X-ray diffraction (XRD), optical microscopy (OM) and scanning electron microscopy (SEM) combined with energy dispersive spectroscopy (EDS), respectively. The magnetostriction coefficients of the alloys were measured by means of resistance strain method. The results indicated that Fe and Fe83Ga17 alloy consist of a single phase of A2 with bcc structure, while the Fe83Ga17Pr0.3 alloy is composed of A2 phase and a small amount of Pr-rich phase. The Pr doping into Fe83Ga17 alloy facilitates the preferred growth in (100) orientation of A2 phase in the alloy. The microstructures of the Fe, Fe83Ga17 and Fe83Ga17Pr0.3 alloys present anisometric morphology with strip-like grains, the equiaxial morphology with coarse grains and a columnar structure with fine grains, respectively. The magnetostriction coefficient of Fe is negative, whereas the magnetostriction coefficients of Fe83Ga17 and Fe83Ga17Pr0.3 alloys are positive. The magnetostrictions of three alloys can be sequenced as Fe83Ga17Pr0.3>Fe83Ga17>Fe.
Key words:  magnetostriction    Fe-Ga alloy    rare earth doping    microstructure
               出版日期:  2018-08-25      发布日期:  2018-09-18
ZTFLH:  TM273  
基金资助: 国家自然科学基金(51661027;51461001);内蒙古自然科学基金(2014MS0540)
作者简介:  赵丽娟:女,1993年生,硕士研究生,研究方向为磁性材料 田晓:通信作者,女,1972年生,博士,教授,研究方向为储氢材料、磁性材料 E-mail:nsdtx@126.com
引用本文:    
赵丽娟, 田晓, 姚占全, 江丽萍. Fe及Fe83Ga17和Fe83Ga17Pr0.3合金的微结构与磁致伸缩性能[J]. 材料导报, 2018, 32(16): 2832-2836.
ZHAO Lijuan, TIAN Xiao, YAO Zhanquan, JIANG Liping. Microstructure and Magnetostriction of Fe, Fe83Ga17 and Fe83Ga17Pr0.3 Alloys: a Comparative Study. Materials Reports, 2018, 32(16): 2832-2836.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.16.024  或          http://www.mater-rep.com/CN/Y2018/V32/I16/2832
1 Wang N J, Liu Y, Zhang H W. Fabrication, magnetostriction pro-perties and applications of Tb-Dy-Fe alloys: A review[J]. China Foundry,2016,13(2):75.
2 Xue S X, Li Q T, Feng S S. Research progress in new magnetostrictive material of Fe-Ga alloy[J]. Materials Review A:Review Papers,2009,23(8):74(in Chinese).
薛双喜,李勤涛,冯尚申.新型磁致伸缩材料Fe-Ga合金的研究进展[J].材料导报:综述篇,2009,23(8):74.
3 Yao Z Q, Tian X, Hao H B, et al. Research progress of effects of element substitution and element doping on structure and magnetostriction of Fe-Ga alloys[J]. Materials Review A:Review Papers,2014,28(11):79(in Chinese).
姚占全,田晓,郝宏波,等.元素替代、掺杂对Fe-Ga合金结构和磁致伸缩性能影响的研究进展[J].材料导报:综述篇,2014,28(11):79.
4 Summers E M, Lograsso T A, Wun-Fogle M. Magnetostriction of binary and ternary Fe-Ga alloys[J]. Journal of Materials Science,2007,42(23):9582.
5 Chopra H D, Wuttig M. Non-joulian magnetostiction[J]. Nature,2015,521(7552):340.
6 Wang J Q, Gao X X, Yuan C. Magnetostriction properties of oriented polycrystalline CoFe2O4[J]. Journal of Magnetism and Magnetic Materials,2016,401:662.
7 王博文,曹淑瑛,黄文美.磁致伸缩材料与器件[M].出版社:冶金工业出版社,2008.
8 Legvold S, Alstad J, Rhyne J. Giant magnetostrietion in dysprosium and holmium single crystals[J]. Physical Review Letters,1963,10(12):509.
9 Clark A E, Belson H S. Giant room-temperature magnetostricitons in TbFe2 and DyFe2[J]. Physical Review B,1972,5(9):3642.
10 Clark A E, Abbundi R, Gillmor W R. Magnetization and magnetic anisotropy of TbFe2, DyFe2, Tb0.27Dy0.73Fe2 and TmFe2[J]. IEEE Transactions on Magnetics,1987,14:542.
11 Guruswamy S, Srisukhumbowornchai N, Clark A E, et al. Strong, ductile, and low-field-magnetostrictive alloys based on Fe-Ga[J]. Scripta Materialia,2000,43(3):239.
12 Clark A E, Wun-Fogle M, Restorff J B, et al. Magnetostrictive properties of galfenol alloys under compressive stress[J]. Materials Transactions,2002,43(5):881.
13 Guruswamy S, Mungsantisuk P, Corson R, et al. Rare earth free Fe-Ga based magnetostrictive alloys for actuator and sensors[J].Transactions of The Indian Institute of Metals,2004,57(4):315.
14 Liu Y Y, Li J H, Gao X X. Effect of Al substitution for Ga on the mechanical properties of directional solidified Fe-Ga alloys[J]. Journal of Magnetism and Magnetic Materials,2017,423:245.
15 Zhou Y, Wang B W, Li S Y, et al. The magnetostriction of Fe-(18-x) at% Ga-x at% Al (3≤x≤13.5) alloys[J]. Journal of Magnetism and Magnetic Materials,2010,322:2104.
16 Bormio-Nunes C, Turtelli R S, Mueller H, et al. Magnetostriction and structural characte-rization of Fe-Ga-X (X=Co, Ni, Al) mold-cast bulk[J]. Journal of Magnetism and Magnetic Materials,2005,290:820.
17 Hu Y, Ding Y T, Zhang Y L, et al. Magnetostriction and characte-rization of Fe-Ga bulk alloy prepared by copper mold casting[J]. Transactions of Nonferrous Metals Society of China,2012,22:2146.
18 Zhang J J, Ma T Y, Yan M. Magnetic force microscopy study of heat-treated Fe83Ga17 with different colingrates[J]. Physica B Condensed Matter,2010,405:3129.
19 Gaudet J M, Hatchard T D, Farrell S P, et al. Properties of Fe-Ga based poeders prepared by mechanical alloying[J]. Journal of Magnetism and Magnetic Mate-rials,2008,320:821.
20 Mellors N J, Zhao X, Simmons L M, et al. A Mossbauer spectroscopy and neutron diffraction study of magnetostrictive, melt-spun Fe-Ga alloy ribbons[J]. Journal of Magnetism and Magnetic Mate-rials,2012,324:3817.
21 Basumatary H, Palit M, Chelvane J A, et al. Beneficial effect of boron on the structural and magnetostrictive behavior of Fe77Ga23 alloy[J]. Journal of Magnetism and Magnetic Materials,2010,322:2769.
22 Li J H, Gao X X, Zhu J, et al. Texture evolution and magnetostriction in rolled (Fe81Ga19)99Nb1 alloy[J]. Journal of Alloys and Compounds, 2009,476(1-2):529.
23 Fang M L, Zhu J, Igor S G, et al. Internal friction in (Fe80-Ga20)99.95(NbC)0.05 alloy at elevated temperatures[J]. Intermetallics,2012,29:133.
24 Jin T Y, Wu W, Jiang C B. Improved magnetostriction of Dy-doped Fe83Ga17 melt-spun ribbons[J]. Scripta Materialia,2014,74:100.
25 Golovin I S, Balagurov A M, Palacheva V V, et al. Influence of Tb on structure and properties of Fe-19%Ga and Fe-27%Ga alloys[J]. Journal of Alloys and Compounds,2017,707:51.
26 Jiang L P, Zhang G R, Yang J D, et al. Research on microstructure and magnetostriction of Fe83Ga17Dyx alloys[J]. Journal of Rare Earths,2010,28:409.
27 Yao Z Q, Tian X, Jiang L P, et al. Influences of rare earth element Ce-doping and melt-spinning on microstructure and magnetostriction of Fe83Ga17alloy[J]. Journal of Alloys and Compounds,2014,637:431.
28 Clark A E, Hathaway K B, Wun-Fogle M, et al. Extraordinary magnetoelasticity and lattice softening in bcc Fe-Ga alloys[J]. Journals of Applied Physics,2003,93(10):8621.
29 Lograsso T A,Ross A R,Schlagel D L,et al. Structural transformations in quenched Fe-Ga alloys[J]. Journal of Alloys and Compounds,2003,350(1-2):95.
30 Yao Z Q, Zhao Z Q, Jiang L P, et al. Effects of Ce addition on the microstructure and magnetostriction of Fe83Ga17alloy[J]. Acta Me-tallurgica Sinica,2013,49(1):87(in Chinese).
姚占全,赵增祺,江丽萍,等.稀土Ce添加对Fe83Ga17合金微结构和磁致伸缩性能的影响[J].金属学报,2013,49(1):87.
31 崔忠圻.金属学与热处理[M].北京:机械工业出版社,2000.
32 严密,彭晓领.磁学基础与磁性材料[M].杭州:浙江大学出版社,2006.
33 Khachaturyan A G, Viehland D. Structurally heterogeneous model of extrinsic magnetostriction for Fe-Ga and similar magnetic alloys: Part Ⅰ. Decomposition and confined displacive transformation[J]. Metallurgical and Materials Transactions A,2007,38A(13):2308.
34 Clark A E, Wun-Fogle M, Restorff J B, et al. Effect of quenching on the magnetostriction of Fe1-x-Gax(0.13<x<0.21)[J]. IEEE Transactions on Magnetics,2001,37(4):2678.
35 Ruffoni M P, Pascarelli S, Grossinger R, et al. Direct measurement of intrinsic atomic scale magnetostriction[J]. Physical Review Letters,2008,101(14):147202.
36 Bai F, Li J F, Viehland D, et al. Magnetic force microscopy investigation of domain structures in Fe-x% Ga single crystals (12<x<25)[J]. Journal of Applied Physics,2005,98:023904.
37 Wu W, Jiang C B. Improved magnetostriction of Fe83Ga17 ribbons doped with Sm[J]. Rare Metals,2017,36(1):18.
38 Gong P, Jiang L P, Yan W J. Effects of Y addition on the microstructure and magnetostriction of the as-cast Fe81Ga19alloy[J]. China Rare Earth,2016,37(2):91(in Chinese).
龚沛,江丽萍,闫文俊,等.Y对铸态Fe81Ga19合金组织结构及磁致伸缩性能的影响[J].稀土,2016,37(2):91.
39 Toshiya T, Kenji H, Teiko O, et al. Characterization of magnetostrictive Fe-Ga-based alloys fabricated by rapid solidification[J]. Scripta Materialia,2009,60:847.
[1] 王杏娟, 靳贺斌, 朱立光, 朴占龙, 王博, 曲硕. B2O3对CaO-Al2O3-SiO2基连铸保护渣性能及结构的影响[J]. 材料导报, 2019, 33(8): 1395-1400.
[2] 弯艳玲, 张猛, 杨健, 于化东. 多尺度微结构对铝合金表面疏水性能的影响[J]. 材料导报, 2019, 33(16): 2715-2719.
[3] 薛宗伟, 李心慰, 栾旭, 罗旭东, 徐若梦, 吴锋. 纳米氧化锆对氧化镁陶瓷抗热震性的影响[J]. 材料导报, 2019, 33(10): 1630-1633.
[4] 王爱国,吕邦成,刘开伟,马 雪,徐海燕,谭京梅. 珊瑚骨料混凝土性能及微结构的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1528-1533.
[5] 尹雪亮, 陈敏, 王楠, 徐磊, 彭可武. Y2O3添加对MA-CA2-CA6复合材料烧结行为的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1357-1361.
[6] 肖水清, 刘杰, 肖白军, 邓欣, 伍尚华. 实现Ti(C,N)基金属陶瓷强韧化的技术路径[J]. 《材料导报》期刊社, 2018, 32(7): 1129-1138.
[7] 宋昊, 谢友均, 龙广成. 水泥乳化沥青砂浆研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 836-846.
[8] 陈渊, 蓝永庭, 张克实, 蔡敢为, 胡桂娟. AZ31镁合金微结构关联的孪生形核与长大统计分析[J]. 材料导报, 2018, 32(20): 3566-3572.
[9] 郑奎,袁昌来,周星星,王维清,许积文,周昌荣. Ba0.04Bi0.48Na0.48TiO3-SrTiO3陶瓷微结构和储能性能[J]. 《材料导报》期刊社, 2018, 32(2): 171-175.
[10] 孙国文, 孙伟, 王彩辉. 现代混凝土传输行为与其微结构之间关系的研究方法及其进展[J]. 材料导报, 2018, 32(17): 3010-3022.
[11] 陈明鹏, 张裕敏, 张瑾, 柳清菊. 苯系物(BTEX)检测气敏材料研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2278-2287.
[12] 贺春林,高建君,王苓飞,马国峰,刘岩,王建明. N2流量对反应共溅射TiN/Ni纳米复合膜结构和结合强度的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2038-2042.
[13] 赵鸣, 李天宇, 石钰. 铈镧复合氧化物对ZnVCrO陶瓷显微结构及压敏性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 120-124.
[14] 翟梦怡, 赵计辉, 王栋民. 锂渣粉作为辅助胶凝材料在水泥基材料中的研究进展*[J]. CLDB, 2017, 31(5): 139-144.
[15] 刘娟红, 李康, 宋少民, 卞立波. 石膏对石灰石粉水泥基材料水化及硬化性能的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 105-110.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed