Please wait a minute...
CLDB  2017, Vol. 31 Issue (5): 139-144    https://doi.org/10.11896/j.issn.1005-023X.2017.05.023
  水泥基材料 |
锂渣粉作为辅助胶凝材料在水泥基材料中的研究进展*
翟梦怡1, 赵计辉2, 王栋民1
1 中国矿业大学北京化学与环境工程学院,北京 100083;
2 清华大学土木工程系,北京 100084
Applying Lithium Slag Powders to Cement-based Materials as Supplementary Cementitious Component: An Overview
ZHAI Mengyi1, ZHAO Jihui2, WANG Dongmin1
1 School of Chemical & Environmental Engineering, China University of Mining and Technology, Beijing 100083;
2 Department of Civil Engineering, Tsinghua University, Beijing 100084
下载:  全 文 ( PDF ) ( 1482KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锂渣是生产锂盐过程中产生的工业废渣,其含有大量活性SiO2和Al2O3,有作为辅助胶凝材料的应用潜力。从物理性质、化学成分与矿物组成、活性评价与活性激发等方面介绍了锂渣自身的物理化学特性和水化活性潜质。从力学性能、工作性、耐久性、水化反应与微结构四方面重点综述了锂渣粉对水泥基材料各方面性能的影响,并进行了理论分析与总结。最后指出锂渣粉用于水泥基材料需要在活性提高、高含量SO3和多孔结构的改善及利用等方面加强研究。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
翟梦怡
赵计辉
王栋民
关键词:  锂渣  辅助胶凝材料  水泥基材料  混凝土  力学性能  工作性  耐久性  微结构    
Abstract: Lithium slag is an industrial solid waste generated from the production of lithium salt, but it is rich in active SiO2 and Al2O3, and has great application potential as supplementary cementitious additives. This paper describes and summarizes the physical-chemical characteristics and potential hydration activity of lithium slag from the aspects of physical characteristics, chemical composition, mineral composition, activity evaluation, activity excitation, etc. It also analyzes and discusses the influences of lithium slag powders on the properties of cement-based materials from the perspectives of mechanical properties, workability, durability, hydration reaction and microstructure, and proposes the corresponding mechanisms. Finally, we suggest that several research directions need more attention, such as improving hydration activity, utilizing abundant SO3 component, optimizing porous structure and so forth.
Key words:  lithium slag    supplementary cementitious material    cement-based material    concrete    mechanical property    workability    durability    microstructure
               出版日期:  2017-03-10      发布日期:  2018-05-02
ZTFLH:  TB332  
基金资助: 高等学校博士学科点专项科研基金(20120023110011);中国博士后科学基金(2016M591170)
通讯作者:  赵计辉:,男,博士后,助理研究员,主要从事水泥基材料及工业固废建材资源化利用的研究 E-mail: zhaojihui324@163.com 王栋民:,男,教授,主要从事材料的精细化合成、化学外加剂和现代水泥混凝土材料及工业/矿业固废处理与生态材料制备的研究 E-mail: wangdongmin-2008@163.com   
作者简介:  翟梦怡:女,1992年生,硕士研究生,主要从事工业固废资源化利用研究
引用本文:    
翟梦怡, 赵计辉, 王栋民. 锂渣粉作为辅助胶凝材料在水泥基材料中的研究进展*[J]. CLDB, 2017, 31(5): 139-144.
ZHAI Mengyi, ZHAO Jihui, WANG Dongmin. Applying Lithium Slag Powders to Cement-based Materials as Supplementary Cementitious Component: An Overview. Materials Reports, 2017, 31(5): 139-144.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.05.023  或          http://www.mater-rep.com/CN/Y2017/V31/I5/139
1 Fei W B. Research on preparation of cement clinker using lithium slag instead of clay[J]. Cement, 1999(1): 4 (in Chinese).
费文斌. 利用锂渣代替粘土烧制水泥熟料的试验[J]. 水泥, 1999(1):4.
2 Liu S F, Chen D W, Li H Q. Situation and suggestions of China′s lithium resources industry[J]. Resour Ind,2016,18(2):12(in Chinese).
刘舒飞, 陈德稳, 李会谦. 中国锂资源产业现状及对策建议[J]. 资源与产业,2016, 8(2):12.
3 Wu F F, Chen L L, Shi K B, et al. Properties and microstructure of HPC with lithium-slag[J]. Sci Technol Eng,2015,15(12):219(in Chinese).
吴福飞, 陈亮亮, 侍克斌,等. 锂渣高性能混凝土的性能与微观结构[J]. 科学技术与工程, 2015, 15(12):219.
4 Chen Y L, Bai J F, Feng T, et al. Research on application of lithium slag powder in non-aggregate grouting mortar[J]. Cem Eng,2011(2): 34 (in Chinese).
陈永利, 白建飞, 冯涛, 等. 锂渣粉在细缝专用无骨灌浆料中的应用研究[J]. 水泥工程, 2011(2): 34.
5 Zhao R P, Guo Z L, Wu P G, et al. The study and application of concrete with 80 MPa high strength and flowing leveling itself[J].Ind Constr,2000,30(7):36(in Chinese).
赵若鹏, 郭自力, 吴佩刚, 等. 80MPa高强度自流平混凝土的研究与应用[J]. 工业建筑,2000,30(7):36.
6 Chen Y Q. The application of lithium slag concrete in hydraulic structure[J]. Shuili Shuidian Shigong,2000(1):17 (in Chinese).
陈应球. 锂盐渣砼在水工建筑中的应用[J]. 水利水电施工,2000(1):17.
7 Li C H, Fei W B. Lithium residue utilization in cement industry[J]. Cem Technol,2001(5):57 (in Chinese).
李春红, 费文斌. 锂渣在水泥工业中的应用研究[J]. 水泥技术, 2001(5):57.
8 Wu F F, Wang G Q, Shi K B, et al. The comprehensive utilization of lithium slag[J]. Fly Ash Compr Utili,2012(3):46(in Chinese).
吴福飞, 王国强, 侍克斌,等. 锂渣的综合利用[J]. 粉煤灰综合利用, 2012(3):46.
9 Zhang L F, Chen J X, Li S W. Examination study of alkali-activated slag-lithium slag concrete[J]. J Build Mater,2006,9(4):488(in Chinese).
张兰芳, 陈剑雄, 李世伟. 碱激发矿渣-锂渣混凝土试验研究[J]. 建筑材料学报, 2006, 9(4):488.
10 Shi N. Research on alkali-slag-lithium slag cement [D]. Chongqing: Chongqing University, 2005 (in Chinese).
石宁. 碱-矿渣-锂渣胶凝材料研究[D]. 重庆: 重庆大学, 2005.
11 Wu F F, Wang X, Chen L L, et al. Pore size distribution and activity evaluation of alkali-activated lithium slag concrete[J]. Water Resour Power,2016,34(1):119 (in Chinese).
吴福飞, 王欣, 陈亮亮, 等. 碱锂渣混凝土的孔径分布与活性评价[J]. 水电能源科学, 2016, 34(1): 119.
12 Liu H. Comparative test of the activity of lithium slag powder based on the ratio of compressive strength[J]. Ready-Mixed Concr, 2011(6):32(in Chinese).
刘洪. 基于抗压强度比指标的锂渣粉活性对比试验分析[J]. 商品混凝土, 2011(6): 32.
13 Das B, Prakash S, Reddy P S R, et al. An overview of utilization of slag and sludge from steel industries [J]. Resour Conserv Recycling,2007,50(1):40.
14 Wan H W, Lin Z S, Shui Z H, et al. The influence of the PSD and appearance of slag powder on the cement properties[J]. J Wuhan Univ Technol,2003,25(1):19 (in Chinese).
万惠文, 林宗寿, 水中和, 等. 矿渣微粉颗粒群分布及形貌对水泥性能的影响[J]. 武汉理工大学学报,2003,25(1):19.
15 Kumar S, Kumar R, Bandopadhyay A, et al. Mechanical activation of granulated blast furnace slag and its effect on the properties and structure of portland slag cement [J]. Cem Concr Compos,2008,30(8): 679.
16 Binici H, Temiz H, Köse M M. The effect of fineness on the properties of the blended cements incorporating ground granulated blast furnace slag and ground basaltic pumice [J]. Constr Build Mater,2007,21(5):1122.
17 Chen P. Research on silicate aluminum slag containing modified lithium concrete [D]. Chongqing: Chongqing University, 2007 (in Chinese).
陈鹏. 改性锂渔硅铝酸盐混凝土研究[D]. 重庆: 重庆大学, 2007.
18 Xi H. The effect of microwave-activated lithium slag on the coagulation performance of sulphoaluminate cement concrete[D]. Nanjing: Nanjing Univ Sci Technol,2014 (in Chinese).
奚浩. 微波激活锂渣对硫铝酸盐水泥促凝效果的影响[D]. 南京: 南京理工大学, 2014.
19 Wang G Q, Nuerkaili·Yiziteliopu, Shi K B, et al. Influence and fractal evaluation of the fineness level of lithium slag on early-age crack-resistant property of concrete[J]. Fly Ash Compr Util,2010(5):23 (in Chinese).
王国强, 努尔开力·依孜特罗甫, 侍克斌, 等. 锂渣细度对锂渣混凝土早期抗裂性能影响及分形评价[J]. 粉煤灰综合利用, 2010 (5): 23.
20 Uysal M,Yilmaz K,Ipek M.The effect of mineral admixtures on mechanical properties,chloride ion permeability and impermeability of self-compacting concrete[J]. Constr Build Mater,2012,27(1):263.
21 Zhang L F. Experiment study on high-performance lithium-slag concrete[J]. J Liaoning Tech Univ,2007,26(6):877 (in Chinese).
张兰芳. 高性能锂渣混凝土的试验研究[J]. 辽宁工程技术大学学报, 2007, 26(6): 877.
22 Lothenbach B, Serivener K, Hooton R D. Supplementary cementitious materials [J]. Cem Concr Res,2011,41(12):1244.
23 Snellings R, Mertens G, Elsen J. Supplementary cementitious materials [J]. Rev Miner Geochem,2012,74(1):211.
24 Tomuro Y, Masuda Y, Konishi T, et al. Effect of pozzolanic reaction on strength development of concrete using fly ash[J]. J Am Chem Soc,2002,115(15):6513.
25 Pan G, Sun W, Ding D, et al. Experimental study on the micro-aggregate effect in high-strength and super-high-strength cementitious composites [J]. Cem Concr Res,1998,28(28):171.
26 Zhao J H, Wang D M, Wang X G, et al. Ultrafine grinding of fly ash with grinding aids: Impact on particle characteristics of ultrafine fly ash and properties of blended cement containing ultrafine fly ash [J]. Constr Build Mater,2015,78:250.
27 Zhao J H, Wang D M, Yan P Y, et al. Particle characteristics and hydration activity of ground granulated blast furnace slag powder containing industrial crude glycerol-based grinding aids [J]. Constr Build Mater,2016,104:134.
28 Yang H Y, Zhang D Y, Shi K B, et al. Experimental study on the compressive strength of high performance concrete added with lithium slag and fly ash[J]. Concrete, 2012(10): 97 (in Chinese).
杨恒阳, 张德宇, 侍克斌, 等. 锂渣、粉煤灰高性能混凝土抗压强度试验研究[J]. 混凝土, 2012(10): 97.
29 Hu P, Gan Y H. The research and application on lithium slag concrete[J]. Sichuan Water Power, 1999(3): 87 (in Chinese).
胡平, 甘艳华. 锂盐渣混凝土性能研究及应用[J]. 四川水力发电, 1999(3): 87.
30 Zhang L, Liu H W, Luo Z T. Study on preparation and performance of concrete containing lithium slag and fly ash[J]. Cem Eng, 2014(6):74(in Chinese).
张黎, 刘宏伟, 罗忠涛. 双掺锂渣-粉煤灰混凝土配制与性能研究[J]. 水泥工程, 2014(6):74.
31 Wu F F, Shi K B, Dong S K, et al. Influence of admixture and water-cement ratio on hydration products and mechanical properties of cement-based materials[J]. Trans Chin Soc Agric Eng,2016,32(4):119 (in Chinese).
吴福飞, 侍克斌, 董双快, 等. 掺合料和水胶比对水泥基材料水化产物和力学性能的影响[J]. 农业工程学报,2016,32(4):119.
32 Guo J H. Test research on strength and early cracking of lithium slag concrete under different temperature and humidity[D]. Urumqi: Xinjiang Agricultural University, 2015 (in Chinese).
郭江华. 不同温湿度下单掺锂渣混凝土的强度与早期抗裂试验研究[D]. 乌鲁木齐: 新疆农业大学, 2015.
33 Li Z J. Experimental study on the strength and the cracking resis-tance at early ages of high-performance concrete added with lithium slag and steel slag[D]. Urumqi: Xinjiang Agricultural University, 2013 (in Chinese).
李志军. 复掺锂渣_钢渣高性能混凝土强度及早期抗裂性能试验研究[D]. 乌鲁木齐: 新疆农业大学, 2013.
34 Zhou H L, Yang H Y, Nuerkali Y, et al. The comparative analysis of influence on the early compressive strength of lithium slag compound fly ash high performance concrete[J]. Fly Ash Compr Utili,2012(1):3(in Chinese).
周海雷, 杨恒阳, 努尔开力·依孜特罗甫, 等. 锂渣复合粉煤灰高性能混凝土早期抗压强度影响因素的比较分析[J]. 粉煤灰综合利用, 2012(1):3.
35 Chen J X,Li H F, Chen P, et al. Study on super early-strength, high-strength and high-performance concrete containing limestone powder composite admixture[J]. Bull Chin Ceram Soc,2007,26(1):190 (in Chinese).
陈剑雄, 李鸿芳, 陈鹏, 等. 石灰石粉锂渣超早强超高强混凝土研究[J]. 硅酸盐通报,2007,26(1):190.
36 Mehta P K, Monterio P J M. Concrete: microstructure, properties and materials [M]. 3rd Edition, McGraw Hill,2006.
37 Klysz G, Balayssac J P. Determination of volumetric water content of concrete using ground-penetrating radar[J]. Cem Concr Res, 2007(37):1164.
38 Xu F L, Li Y Q, Ye H Y. Study on application of lithium slag used in LC50 lightweight aggregate concrete[J].China Concr Cem Prod, 2012(10):20(in Chinese).
徐芬莲, 李预奇, 叶海艳. 锂渣在LC50轻集料混凝土中的应用研究[J]. 混凝土与水泥制品, 2012(10): 20
39 Wen Y, Song Y F, Abula K J, et al. Influence on fresh concrete with ground granulated lithium slag[J]. Concrete,2011(10):58 (in Chinese).
温勇, 宋亚峰, 阿不拉·坎杰, 等. 磨细锂渣粉对新拌混凝土性能的影响[J]. 混凝土,2011(10):58.
40 Zhang L, Lv S Z, Liu Y, et al. Influence of lithium slag on cement properties[J]. J Wuhan Univ Technol,2015,37(3):23 (in Chinese).
张磊, 吕淑珍, 刘勇, 等. 锂渣粉对水泥性能的影响[J]. 武汉理工大学学报, 2015, 37(3): 23.
41 Zhu Y B, Chu H. The experimental investigation on morphological effect of lithium slag under high and low water-binder ratio[J]. J Xinjiang Agric Univ,1998,21(4):56(in Chinese).
朱永斌, 楚红. 锂渣在高低水胶比中形态效应的试验研究[J]. 新疆农业大学学报,1998,21(4):56.
42 Wu F F, Chen L L, Shi K B, et al. Chloride ion penetration and activity evaluation of lithium slag concrete[J]. Sci Technol Eng,2015, 15(17):227(in Chinese).
吴福飞, 陈亮亮, 侍克斌, 等. 锂渣混凝土的氯离子渗透性能与活性评价[J]. 科学技术与工程,2015,15(17):227.
43 Wen Y, Liu G J, Qin Z Y, et al. Study on the effect of lithium slag powders upon the chloride penetration of concrete[J]. Concrete, 2011(8):76(in Chinese).
温勇, 刘国君, 秦志勇, 等. 锂渣粉对混凝土氯离子渗透性的影响[J]. 混凝土,2011(8):76.
44 Zhang G T, Dong H J, Wen Y. Effect of lithium slag powder on the permeability of concrete under freeze-thaw cycles[J]. China Concr Cem Prod,2015(3):83 (in Chinese).
张广泰, 董海蛟, 温勇. 冻融循环下锂渣粉对混凝土渗透性的影响[J]. 混凝土与水泥制品, 2015(3): 83.
45 Dong H J. The research of influence of lithium slag powders on chloride penetration of concrete under load or freeze-thaw cycles[D]. Urumqi: Xinjiang University, 2014 (in Chinese).
董海蛟. 荷载和冻融循环作用下锂渣粉对混凝土氯离子渗透性的影响研究[D]. 乌鲁木齐: 新疆大学, 2014.
46 Wen Y, Xu H, Han D M. Study on the effect of lithium slag powders upon the sulfate corrosion resistance of cement materials[J]. Concrete,2010(12):90(in Chinese).
温勇, 徐虎, 韩东明. 锂渣粉对水泥基材料抗硫酸盐侵蚀性能的影响[J]. 混凝土,2010(12):90.
47 Atahan H N,Dikme D.Use of mineral admixtures for enhanced resistance against sulfate attack[J].Constr Build Mater,2011,25(8):3450.
48 Collins F, Sanjayan J G. Effect of pore size distribution on drying shrinkage of alkali-activated slag concrete [J]. Cem Concr Res,2000, 30(9): 1401.
49 Mohammed M K, Dawson A R, Thom N H. Macro/micro-pore structure characteristics and the chloride penetration of self-compacting concrete incorporating different types of filler and mineral admixture[J]. Constr Build Mater,2014,72(72):83.
50 Krivenko P, Drochytka R, Gelevera A, et al. Mechanism of preventing the alkali-aggregate reaction in alkali activated cement concretes[J]. Cem Concr Compos,2014,45(1):157.
51 Ding J T, Bai Y, Cai Y B. Suppressing effect of lithium slag on alkali-silica reaction and separation of its self-expansion[J]. J Hohai Univ:Nat Sci,2008,36(6):824 (in Chinese).
丁建彤, 白银, 蔡跃波. 锂渣粉对碱-硅反应的抑制效果及其自身微膨胀的分离[J]. 河海大学学报:自然科学版,2008,36(6): 824.
52 Sposito G, Santos M D, Andrade W D. Influence of mineral admixtures on the alkali-aggregate reaction[J]. Cem Concr Res,1997,27(12):1899.
53 Zong Y H, Gan L J, Wang Y Y. Inhibition effect of mineral admixtures on the alkali-silica reaction of concrete[J]. J Xinjiang Univ:Nat Sci Ed,2002(S1):76(in Chinese).
宗永红, 甘立军, 汪永治. 掺合料对混凝土碱骨料反应抑制效果的研究[J]. 新疆大学学报:自然科学版, 2002(S1): 76.
54 Zhu Z K, Chen J X. Study of carbonation resistance of self-compacting high-strength concrete with composite admixture of ultra-fine lithium slag[J]. Constr Technol,2012(22):40(in Chinese).
祝战奎, 陈剑雄. 超磨细锂渣复合掺和料自密实高强混凝土抗碳化性能研究[J]. 施工技术, 2012(22): 40.
55 丁建彤,石泉,安普斌,等.锂渣粉在抗冲磨混凝土中的应用研究[C]//第七届全国混凝土耐久性学术交流会论文集.宜昌,2008:408.
56 Yang H Y. A study on the cracking resistance theory at early ages of high performance concrete added with lithium slag and fly ash[J]. Fly Ash Compr Util,2013(4):3(in Chinese).
杨恒阳. 锂渣、粉煤灰高性能混凝土早期抗裂机理研究[J]. 粉煤灰综合利用, 2013(4): 3
57 Li Z J, Shi K B, Nuerkaili·Yiziteliopu. Experimental study on the cracking resistance at early ages of high performance concrete added with lithium slag and steel slag[J]. Concrete,2013(2):25 (in Chinese).
李志军, 侍克斌, 努尔开力·依孜特罗甫. 锂渣、钢渣高性能混凝土早期抗裂性能试验研究[J]. 混凝土, 2013(2): 25.
58 Guo J H, Shi K B, Wu F F. Cracking resistance at early ages of concrete added with lithium slag under different temperature[J]. Fly Ash Compr Util,2015(1):33(in Chinese).
郭江华, 侍克斌, 吴福飞. 不同温度下锂渣混凝土的早期抗裂性能[J]. 粉煤灰综合利用,2015(1):33.
59 白建飞,李海桥,李军全,等. 锂渣粉在抹灰砂浆中的水化机理研究[M]//商品砂浆的科学与技术. 北京:化学工业出版社, 2011: 239.
60 Xia C, Liu H W, Yan Q X. Pozzolanic activity and morphology features of concrete admixture of lithium-salt residue[J]. J Southwest Jiaotong Univ,2002,37(1):29 (in Chinese).
夏春, 刘浩吾, 晏启祥. 混凝土复合掺合料火山灰活性与形貌研究[J]. 西南交通大学学报, 2002, 37(1):29.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 李地红, 夏娴, 王艳君, 张景卫, 许国栋. 镶嵌式混凝土构件加固、补强、修复技术研究[J]. 材料导报, 2019, 33(z1): 225-228.
[7] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[8] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[9] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[10] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[11] 李地红, 夏娴, 高群, 代函函, 于海洋. 镶嵌式加固混凝土构件加固区域力学行为的有限元分析[J]. 材料导报, 2019, 33(z1): 249-253.
[12] 黄艳玲, 元强, 刘耀强, 赵虎, 王跃跃, 左胜浩, 周大军, 孙泽川. 外加剂对半流动性自密实混凝土滑模施工性能的影响[J]. 材料导报, 2019, 33(z1): 254-260.
[13] 夏娴, 李地红, 高群, 代函函, 于海洋. 基于ABAQUS的镶嵌式混凝土加固、修复技术研究[J]. 材料导报, 2019, 33(z1): 269-273.
[14] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[15] 兰明章, 聂松, 王剑锋, 张巧伟, 陈智丰. 古建筑修复用石灰基砂浆的研究进展[J]. 材料导报, 2019, 33(9): 1512-1516.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed